Kilingaru I. Shivakumar, PhD

(Family name) (Given name)
 DOB: 10th July 1986, Indian
 ☑ Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)
 Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Japan 001-0021
 ☑ (+81)-11-706-9694

@ shiva[AT]icredd.hokudai.ac.jp

DORCID 0000-0003-0952-7346

RESEARCHERID AAC-5485-2019

PROFILE

- 10 years of research experience in synthetic organic and supramolecular chemistry.
- Experience in milligram to multigram synthesis of macrocycles (pillar[5]arene and pillar[5]quinone), redox-active donor-acceptor (D-A) charge-transfer systems, stable organic radicals, liquid crystals, and porous hydrogen-bonded organic frameworks.
- Expertise in characterization of compounds exhibiting porous network, charge conduction, ferroelectricity, magnetism and liquid crystalline behavior.

PROFESSIONAL EXPERIENCES

<u>May 2019- March 2021</u> :	Postdoctoral Researcher at Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
Title of the project	Porous hydrogen-bonded organic frameworks (HOFs) based on redox-active building blocks
Areas of Research	• Synthesis of redox-active, π -conjugated tetra-, penta-, hexatopic carboxylic acids • Recrystallization at elevated temperatures to obtain H-bonded Hex-Net • Investigation of the framework stability employing XRD and thermal techniques • Evaluation of permanent porosity by gas adsorption • Photoconductivity, cyclic voltammetry, photophysics and DFT calculation.
Supervisors	Prof. Ichiro Hisaki and Prof. Takayoshi Nakamura
<u>Dec 2017-April 2019</u> :	Postdoctoral Researcher at Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Poland
Title of the project	Stable π -delocalized radical based bent-core liquid crystals
Area of Research	• Multi-step organic synthesis of a stable π -delocalized planar radical • Suitable functionalization of the radical to obtain a series of bent-core liquid crystals • Investigation of mesogenic properties using POM, thermal and XRD techniques • Magnetic studies using SQUID and solution/solid-state EPR • Electrooptical studies, photoconductivity, cyclic voltammetry, photophysics and DFT calculation.
Supervisor	Prof. dr hab. inż. Piotr Kaszyński
<u>Aug 2017-Nov 2019</u> :	SERB- National Postdoctoral Fellow at Indian Institute of Technology Guwahati, India
Areas of Research	• Discotic liquid crystals • Semiconducting property of shape-persistent arylene- ethynylene macrocycles • Friedal-Crafts alkenylation using Zeolite Y, hydrogen

EDUCATIONAL QUALIFICATIONS

<u>Jan 2011-Jun 2017</u> :	PhD in Chemistry from CSIR-National Chemical Laboratory, Pune, India
Title of the Thesis	De Novo Designed Organic Donor-Acceptor Systems Featuring Inter- and Intramolecular Charge Transfer Interactions
Areas of Research	• Synthesis of macrocycles: Pillar[5]arene and Pillar[5]quinone • Solvent- assisted self-assembly of Pillar[5]quinone • Studies on the intermolecular charge-transfer crystals of Pillar[5]quinone with electron donors • Synthesis of a series of C_3 symmetric intramolecular donor-acceptor system based on tri(dithiolylidene) cyclohexanetrione • Physical studies: ferroelectricity, conductivity, gelation, photophysics and electrochemistry.
CGPA (10)	8.35, Distinction
Supervisor	Prof. Gangadhar J. Sanjayan
July 2008-May 2010:	Master of Science (M.Sc.) in Chemistry from National Institute of Technology Karnataka, Suratkal, India
<u>July 2008-May 2010</u> : Title of the Thesis	Karnataka, Suratkal, India Synthesis and Third Order Non-Linear Optical Studies of Copper(I)-
	Karnataka, Suratkal, India
Title of the Thesis	Karnataka, Suratkal, India Synthesis and Third Order Non-Linear Optical Studies of Copper(I)- phenanthroline based Complexes
Title of the Thesis CGPA (10)	Karnataka, Suratkal, India Synthesis and Third Order Non-Linear Optical Studies of Copper(I)- phenanthroline based Complexes 9.84, Distinction, First Rank, 2 gold medals

RESEARCH INTERNSHIPS

Sept 2010-Dec 2010:	Visiting Student at Raman Research Institute, Bengaluru, India
Area of Research	Synthesis of Polymer-Stabilized Liquid Crystalline Blue Phases
Supervisor	Prof. Sandeep Kumar
<u>May 2009-July 2009</u> :	Summer Research Student at Indian Institute of Technology Bombay, India
<u>May 2009-July 2009</u> : Area of Research	Summer Research Student at Indian Institute of Technology Bombay, India Routes to Synthesize Functionalized Phosphines

AWARDS/ACHIEVEMENTS

2017	National Postdoctoral Fellowship with research grant from SERB-DST, Government of India
2013-2015	Senior Research Fellowship from CSIR-UGC, Government of India
2011-2012	Junior Research Fellowship from CSIR-UGC, Government of India
2010	Qualified competitive all-India level exams for research fellowships: GATE and CSIR-UGC
2010	Prof. G H Kulkarni and NITK Gold medals for securing first rank in MSc. Chemistry
2009	Summer Research Fellowship, Indian Institute of Technology (IIT) Bombay, India

RESEARCH PUBLICATIONS

7. <u>Shivakumar, K. I.</u>, Noro, S-i., Yamaguchi, Y., Ishigaki, Y., Saeki, A., Takahashi, K., Nakamura, T., Hisaki, I.

"Hydrogen-Bonded Organic Framework Based on Redox-Active Tri(dithiolylidene)cyclohexanetrione" *Chem. Commun.* **2021**, *57*, 1157. (citations 0)

- Shivakumar, K. I.; Pociecha, D.; Szczytko, J.; Kapuscinski, S.; Monobe, H.; Kaszynski, P. "Photoconductive Bent-Core Liquid Crystalline Radicals with a Paramagnetic Polar Switchable Phase" *J. Mater. Chem. C*, 2020, *8*, 1083. (citations 6)
- Shivakumar, K. I.; Goudappagouda; Gonnade, R.; Babu, S. S.; Sanjayan, G. J. "Conducting Nanofibres of Solvatofluorochromic Cyclohexanetrione–Dithiolylidene-Based C₃ Symmetric Molecule" *Chem. Commun.* 2018, 54, 212. (citations 2)
- Shivakumar, K. I.; Swathi, K.; Goudappagouda; Das, T.; Kumar, A.; Makde, R.D.; Vanka, K.; Narayan, K. S.; Babu, S. S.; Sanjayan. G. J.
 "Mixed-Stack Charge Transfer Crystals of Pillar[5]quinone and Tetrathiafulvalene Exhibiting Ferroelectric Features" *Chem. Eur. J.* 2017, 23, 12630. (Hot Paper, citations 6)
- Shivakumar, K. I.; Yan, Y.; Hughes, C. E.; Apperley, D. C.; Harris, K. D. M.; Sanjayan, G. J. "Exploiting Powder X-ray Diffraction to Establish the Solvent-Assisted Solid-State Supramolecular Assembly of Pillar[5]quinone" *Cryst. Growth Des.*, 2015, 15, 1583. (citations 14)
- Shivakumar, K. I. and Sanjayan, G. J.
 "An Easy and Multigram-Scale Synthesis of Pillar[5]quinone by the Hypervalent Iodine Oxidation of 1,4-Dimethoxypillar[5]arene"

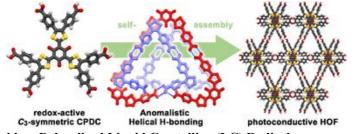
Synthesis 2013, 45, 896. (citations 16)

 Rudresha, B. J.; Bhat. B. R.; Kumar, H. C. S.; <u>Shivakumar, K. I.</u>; Safakath, K.; Philip, R.
 "Synthesis, Characterization and Third-Order Nonlinear Optical Studies of Copper Complexes Containing 1,10-Phenanthroline-5,6-dione and Triphenylphosphine Ligands" *Synth. Met.* 2011,161, 535. (citations 11)

PATENTS

 Process for the Preparation of Pillar[5]quinone
 G. J. Sanjayan and <u>K. I. Shivakumar</u> US Patent 9000224, April 7, 2015

SCIENCE JOURNALISM

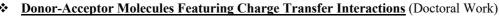

1. <u>Shivakumar K. I.</u> *Scigem* 2018, *5*, 6 (<u>pdf</u>) "Chemistry is right under our nose all the time"

L RESEARCH SUMMARY

My research focuses on studying various material applications arising from the self-organization of electro-active organic molecules due to non-covalent interactions.

* Redox-active porous hydrogen-bonded organic frameworks (HOFs)

Hydrogen-bonded Organic Framework (HOF)s are porous materials endowed with reversible intermolecular Hbonds and consequent high crystallinity. Unfortunately, the labile nature of H-bonds frequently causes the collapse of frameworks during activation, making it challenging to obtain HOF with permanent porosity. We have reported the first 3D H-bonded network of redox-active hexakis(4-carboxylphenyl) tridithiolylidenecyclohexanetrione, **CPDC-1**, exhibiting permanent porosity, amphoteric redox behavior and photoconductivity. Interestingly, the bite angle made by H-bonding groups crucially effects the H-bonding pattern and resulting network of HOF.



Chem. Commun., 2021, 57, 1157

Stable π-Delocalized Liquid Crystalline (LC) Radicals

Stable π -delocalized radical-based multifunctional materials with controllable electrochemical, photophysical, semiconductive and magnetic properties, which can be enhanced by self-organization in LC state are in high demand. In this work, we planarized the central paramagnetic unit to enhance the π -stacking, which resulted in strong spin-spin interaction, high-charge mobility, bathochromic shift, and facilitated the formation of an antiferroelectric B2 phase, exhibiting tri-stable electrooptic switching.

Pillar[5]quinone (**P5Q**), containing five 1,4-benzoquinone moieties, is an efficient electron acceptor; however, poses difficulty in isolation owing to its poor solubility in most common organic solvents. Hence, we developed an alternate, facile synthetic methodology to obtain **P5Q** using hypervalent iodine oxidation and purified it by recrystallization. We observed that solvent 1,1,2,2-tetrachloroethane (TCE) induces self-organization of **P5Q** through an anion- π type interactions. In addition, **P5Q** forms 1:1 mixed-stack charge transfer crystals with donors such as tetrathiafulvalene (**TTF**) and 4,4'-bis(*N*-carbazolyl)-1,1'-biphenyl (**CBP**). Interestingly, the **TTF-P5Q** crystals exhibit ferroelectric features with ferroelectric to paraelectric phase transition at 329 K.

On the other hand, a set of easily tailorable, C_3 symmetric molecules having a π -extended push-pull core was synthesized. These molecules exhibited intramolecular charge transfer (ICT) interactions, solvatofluorochromism, large stokes shift, amphoteric redox behavior, gelation and conductivity in the *J*-aggregate undoped nanofibers.

Sequipment expertise and skills

<u>Analytical Techniques</u>: NMR (Bruker DPX200 and JEOL ECS400 & 600), UV-vis-NIR, ATR/FT-IR, Fluorescence spectroscopy, mass spectrometry (MALDI-TOF, LC-MS, GC-MS), preparative HPLC, cyclic voltammetry, powder and single crystal XRD, electron paramagnetic resonance (EPR), polarizing optical microscopy (POM), thermal analysis: TGA and DSC, Solvent Purification System (SPS), Kugelrohr vacuum distillation and sample preparation for SEM, TEM, AFM and SQUID.

<u>Reaction Techniques</u>: Air-free technique (Glovebox and Schlenk line), High-pressure reaction in autoclave and sealed tubes, and microwave reactor.

<u>Softwares</u>: ChemDraw, PyMOL, Mercury, Origin, Kaleidagraph, Endnote, Sci-finder, Adobe illustrator and photoshop, NMR softwares, and MS office.

ORAL COMMUNICATIONS

- 4. "Paramagnetic Antiferroelectrics: Bent-Core Mesogens Derived from the Blatter Radical" Piotr Kaszyński,* Shivakumar I. Kilingaru, Damian Pociecha, Jacek Szczytko, and Hirosato Monobe '17th International Conference on Ferroelectric Liquid Crystals', University of Colorado, USA, August 2019
- 3. "Self-Organizing Planar Blatter Radicals Design, Synthesis and Consequences of Planarization on the Key Properties" Martin Cigl, Shivakumar I. Kilingaru, Damian Pociecha, Jacek Szczytko, Hirosato Monobe and Piotr Kaszyński* '15th European Conference on Liquid Crystals', Wrocław, Poland, July 2019
- 2. "Organic Donor-Acceptor Systems Featuring Inter- and Intramolecular Charge Transfer Interactions" Kilingaru I. Shivakumar and Gangadhar J. Sanjayan*
 'National Conference on Advanced Organic Synthesis - 2017', CSIR-NCL, Pune, India, Feb 2017

 "Pillar[5]quinone: Facile Synthesis, Self-assembly, Crystal Structure and their Application in Semiconductors" Kilingaru I. Shivakumar and Gangadhar J. Sanjayan*
 "National Conference on Advanced Organic Synthesis - 2016", CSIR-NCL, Pune, India, April 2016

POSTER PRESENTATION

- 5. Planar Blatter Radical-Based Bent-Core Mesogens, 17th ACHC, CBMM- PAN, Lodz, Poland, November 2018
- 4. Solvent-Assisted Solid-State Self-Assembly of Pillar[5]quinone, NSC-2015, CRSI-CSIR-NCL, Pune, India, February 2015
- 3. Solvent-Assisted Solid-State Self-Assembly of Pillar[5]quinone, **NSD celebration**, CSIR-NCL, Pune, India, February 2015 2. An Easy and Multi-Gram Scale Synthesis of Pillar[5]quinone, its Self-Assembly and Electrochemical Properties, **FAPS**-
- MACRO 2013, IISc., Bengaluru, India, May 2013
- 1. An Easy and Multi-Gram Scale Synthesis of Pillar[5]quinone, NSD celebration, CSIR-NCL, Pune, India, February 2013

CHEMISTRY OUTREACH

- 2. Demonstrated hands-on chemistry experiments to high school children, with ingredients that are used in daily life, as a part of CSIR Platinum Jubilee Technofest at 36th India International Trade Fair, New Delhi, India, November 2016.
- 1. Demonstrated hands-on, home do-able, colorful experiments to students from sixty secondary schools as a part of International Year of Chemistry (IYC) 2011.

English (Fluent), Kannada (Fluent), Tulu (Fluent), Hindi (Fluent), Polish (Basic), Japanese (Basic)