

カタリスト第15号

棈報科学で

その先の，さらに向こうへ！

カタリスト13号と14号では，機械学習やニューラルネットワークといった情報科学ツールが，実験室の作業効率化にどのように役立っているかについて学びました。今号ではさらに，化学反応の計算速度向上にも情報科学が活用されている例を見ていきましょう。
ICReDDでは，ある分子に対して可能なすべての化学反応経路を探索する人工力誘起反応（AFIR）法を用いて，化学反応を計算によって予測しています。 しかし，大きな分子や複雑な反応となると，すべての経路の計算に果てしないほどの時間がかかってしまいます。 そのためICReDDでは，ニューラルネットワークを使用して計算の高速化に取り組んでいます。

1．計算で可能性を探索

AFIR法は，ある分子の中の一組の原子に対して人工的に力を加えて分子の構造を変化させ，密度汎関数理論（DFT）とよばれる理論に基づく計算法を用いて，その変化にどれだけのエネルギーが必要 かを算出しています。変化のプロセスーつ一つを自動的かつ網羅的に計算することで化学反応経路 を探索できるため，化学者がまだ想像していない反応経路の発見にもつながります。DFTの計算は非常に正確ですが，正確さゆえに長い計算時間を要します。また，一本の反応経路を導き出すには何百という計算ステップが必要であるため，薬や触媒などの原子数の多い大きな分子を計算対象とす る場合，大きさによっては数千～数億年以上といった非合理的な時間を要することとなり，私たち が生きている間に計算が終わらないという弱点があります。それは同時に，人類が未発見の反応の可能性がそれほどまでに広大であるということです。

2．速度か，精度か

未知の可能性を計算によって探索するというプロセスは，RPG（ゲーム）で探し物を見つける旅に出 るようなものです。次に出会うのは敵なのか宝箱なのか，新しい化学反応なのか？大きな分子を相手に計算を終わらせて，人類は新しい薬を開発できるのか？そんなゲームがあったとしたら，だい たいOKなところで見切りをつけサクサク進むか，コツコツと時間をかけて正確に攻略していくタ イプか，皆さんはどちらでしょうか？一般的には速度と精度の両立は難しく，どちらかを優先すれ ばもう一方がおろそかになってしまうものです。加えて化学においては，「とにかく速く，でも正確 に！全ての計算を，有限時間内に終わらせるべし！」という，初期設定から難易度マックスなので，現実的には計算ステップの少ない小さい分子のみを対象とするしかなく，大きい分子については計算 をスタートさせることすらできないというジレンマがありました。
 Q反応経路の探真にDFT計算のみを使用する場合，その対象は小さい分子だけに －限られてしまいます。なせなら大きい分子だと＿からです。
A）計算時間が果てしない
C 反応経路の可能性がありすぎる
B）分子のエネルギーが高すぎる

クイズの答えはInstagramのハイライト で公開しています。ぜひチャレンジして みてください。\＃ReactWithUs
＠lCReDDconnect

研究者紹介

．

ストウブ・ルーベン
Ruben Staub

略歴

ICReDD特任助教およびヴァーネックグループCo－PI。学士から修士課程に おいてコンピュータサイエンス，物理学，化学を修め，2020年リヨン高等師範学校（フランス）にて博士号（理論化学）を取得。2021年8月ICReDD博士研究員を経て2022年7月より現職。

ストウブ特任助教はコンピュータサイエンスと理論化学にまたがる最先端の領域を研究しています。化学分野における難題解決に効率的に取り組むため， コンピュータによる分子システムのシミュレーション改良を目指し，特に最近では，化学反応の発見と理解の加速化へ向けて，人工知能の最新技術を取り入れています。

代表的な論文
Molecules，2023，28，4477
Appl．Math．Comput．，2021，399，125996；
J．Chem．Phys．，2020，152，024124；

○新たに着任した研究者

グリム・
ジョイス アントニア アンナ研究テーマ
不斉触媒，有機触媒

アディカリ・ サスワティ研究テーマ
細胞内蛍光分子

ニュース

ICReDD News

March 2024
©代表的な論文 （2023年12月から2024年2月まで）

光異性化の＂ファントム状態＂を暴く
～最先端のフェムト秒分光と量子化学計算で化学反応の謎に決着～
（武次徹也）
https：／／www．icredd．hokudai．ac．jp／ja／research／10416

固体内で高秩序回転型運動を示す新 しいギア型分子結晶の開発に成功
～噛み合う分子間配列構造により，新

たな結晶性ギア型分子を開発～
（ジン・ミング，ミケルドフ・アレクサンダー，チツベロ・ミカイル， リャリン・アンドレイ，武次徹也，伊藤肇）
https：／／www．icredd．hokudai．ac．jp／ja／research／10367

ヒト脳腫瘍グリオーマモデル細胞の悪性度を評価するCancer GPSを開発 ～革新的な異分野融合研究技術！がん
 の悪性度評価に期待～
（ワン・メンフィ，北川裕一，津田真寿美，田中伸哉，長谷川靖哉） https：／／www．icredd．hokudai．ac．jp／ja／research／10383

プラスチック材料を開始剤とするラジ カル反応の開発～医薬品や機能性材料をより安全で環境に優しく生産する
 ための有機合成プロセスの開発へ～
（久保田浩司，前田理，伊藤肇）
https：／／www．icredd．hokudai．ac．jp／ja／research／10191

・シンポジウム
－第7回 ICReDD国際シンポジウム
～ライジングスタープログラム～
アウトリーチ
－アカデミックファンタジスタ2023
（高校生向け授業，施設見学）
－マンスリーニュースポストカード
－クオータリーニュースポスター カタリスト第14号

第7回 ICReDD国際シンポンジウム 質疑応答

①受賞

－日本化学会 第41回学術賞（猪熊）
－Asian Core Program
Lectureship Award（Korea）（林）

アカデミックファンタジスタ2023

マンスリーニュース ポストカード
．カ カタリスト

カタリスト第14号

ICReDDについて

新しい化学反応の開発は，人類の繁栄や環境問題 と密接に関わっています。その代表的な例は， 2010年にノーベル化学賞を受賞したクロスカップ リング反応です。この反応は医薬品の約 20% ，液晶 や有機EL材料のほぼ全ての生産に利用されてお り，年間約60兆円規模の産業に関わっています。こ れは，新しい化学反応の開発が社会にいかに大き な影響をもたらすかを示すわかりやすい例です。北海道大学に設置された化学反応創成研究拠点 （ICReDD）は，その名の通り化学反応開発を専門 とする，WPIの拠点です。化学反応を自在に設計す ることを目標に，異なる分野の研究者がそれぞれ の強みを活かし，協力し合いながら分野融合型の研究を行っていることが大きな特徴の1つです。化学反応の自在設計には，あらゆる段階におけ る横断的な異分野連携が必要となりますが，この新たな融合研究を推進するために誕生したのが ICReDDです。化学反応という自然界の基本的な プロセスを研究するためには，量子化学計算，情報技術，最新の実験技術，先端材料の開発など分野 ごとに分かれて研究するのではなく，真に融合さ れた新たな研究技術が必要不可欠なのです。
（上）原渕祐特任准教授が参加している「アカデミックファンタ ジスタ2023」事業を通じてICReDDを訪問した高校生へ向け て，計算主導による化学反応開発と発見方法を解説し，練習問題を解きながら，量子化学計算を用いた化学反応解析を体験 してもらいました。（下）第7回ICReDD国際シンポジウム～ ライジングスタープログラム～では，各講演，ポスターセッ ションともに研究者が活発に意見を交換していました。

カタリストとは

「カタリスト」とは触媒のことです。化学で使用される触媒とは，反応をより速く起こ させるために使われます（例：分子を結合させる，反応の障壁を減らす，分子を活性化させる，など）。このポスターを通して，読者の方々が日常に無数に存在する化学反応と私たちの生活を結び付け，化学反応や化学といったものが私たちの世界と実際 にはどのように関わっているのかを，新しい視点で気づくためのお手伝いができれば と考えています。そして，「カタリスト」で私たちのことをもっと知ってもらい，読者の皆さんと私たちの間に新たな関係（化学反応）を築くきっかけ（触媒）を提供できれば と思っています。\＃ReactWithUs

React With Us！

最新情報を入手するには， ICReDDのSNSをフォローしてください。 ＠ICReDDconnect
© \mathbb{X}（ $)$－in

カタリスト
第15号 2024年3月発行

発行所
北海道大学 化学反応創成研究拠点（WPI－ICReDD／アイクレッド）〒001－0021 北海道札幌市北区北21条西10丁目

011－706－9646（広報担当）
public＿relations＠icredd．hokudai．ac．jp
WEB https：／／www．icredd．hokudai．ac．jp／ja／

