リーニョルデットトロンド

thumbnail image
リーニョルデットトロンド
博士研究員
関連ウェブサイト
連絡先

trond atmark icredd.hokudai.ac.jp

アレクサンドル・ヴァーネック グループ
主任研究者
教員
博士研究員

研究紹介

研究テーマ

Machine learning for chemistry

キーワード

Generative machine learning, Geometric deep learning, Graph neural networks, Denoising diffusion, Energy-based models, Catalyst discovery, Transition state modeling

研究概要

Having previously researched a variety of topics in different fields, including graph neural networks for catalyst discovery, here at ICReDD I will continue to research generative machine learning methods as applied in chemistry contexts, especially models trained on chemical reaction network data from AFIR search. Specifically, I will research machine learning methods such as energy-based models.

代表的な研究成果

  • A Deep Generative Model for the Inverse Design of Transition Metal Ligands and Complexes
    Magnus Strandgaard, Trond Linjordet, Hannes Kneiding, Arron L. Burnage, Ainara Nova, Jan Halborg Jensen, David Balcells
    JACS Au, 2025, 5, 2294-2308.
    DOI: 10.1021/jacsau.5c00242
  • Evolving Light Harvesting Metal Complexes with AI-Made Ligands
    Alejandra Pita-Milleiro, Magnus Strandgaard, Trond Linjordet, Hannes Kneiding, David Balcells
    ChemRxiv preprint, 2025.
    DOI: 10.26434/chemrxiv-2025-23zrk
  • Towards Formally Grounded Evaluation Measures for Semantic Parsing-based Knowledge Graph Question Answering
    Trond Linjordet, Krisztian Balog, Vinay Setty
    ICTIR ’22: Proceedings of the 2022 ACM SIGIR International Conference on Theory of Information Retrieval, 2022, 3-12.
    DOI: 10.1145/3539813.3545146
  • Detecting Topological Entanglement Entropy in a Lattice of Quantum Harmonic Oscillators
    Tommaso F. Demarie, Trond Linjordet, Nicolas C. Menicucci, Gavin K. Brennen
    New Journal of Physics, 2014, 16.
    DOI: 10.1088/1367-2630/16/8/085011