研究紹介
研究テーマ
Prediction of chemically relevant properties using machine learning, for accelerating AFIR calculations
キーワード
経歴
履歴書をご参照ください。
代表的な研究成果
Efficient recursive least squares solver for rank-deficient matrices
R. Staub, S. N. Steinmann, Appl. Math. Comput., 2021, 399, 125996
DOI: 10.1016/j.amc.2021.125996
DockOnSurf: A Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces
C. Martí, S. Blanck, R. Staub, S. Loehlé, C. Michel, S. N. Steinmann, J. Chem. Inf. Model., 2021, 61, 3386-3396
DOI: 10.1021/acs.jcim.1c00256
Parameter-free coordination numbers for solutions and interfaces
R. Staub, S. N. Steinmann, J. Chem. Phys., 2020, 152, 024124
DOI: 10.1063/1.5135696
Water adlayers on noble metal surfaces: Insights from energy decomposition analysis
P. Clabaut, R. Staub, J. Galiana, E. Antonetti, S. N. Steinmann, J. Chem. Phys., 2020, 153, 054703
DOI: 10.1063/5.0013040
Energy Decomposition Analysis for Metal Surface–Adsorbate Interactions by Block Localized Wave Functions
R. Staub, M. Iannuzzi, R. Z. Khaliullin, S. N. Steinmann, J. Chem. Theory Comput., 2019, 15, 265-275
DOI: 10.1021/acs.jctc.8b00957
関連する研究記事
業績一覧
2023年
-
Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case
, P. Gantzer, Y. Harabuchi, S. Maeda, A. Varnek, Molecules, 2023, 28 (11), 4477
DOI: 10.3390/molecules28114477