STAUB, Ruben

thumbnail image
STAUB, Ruben
Specially Appointed Assistant Professor
Co-PI (Varnek Group)
Contact

ruben.staub atmark icredd.hokudai.ac.jp

VARNEK, Alexandre Group
Principal Investigator
Faculty Members
  • thumbnail image
    STAUB, Ruben
Postdoctoral Fellows

About the Research

Research Theme

Prediction of chemically relevant properties using machine learning, for accelerating AFIR calculations

Keyword

Neural Networks Potentials, Machine Learning Force Fields, Active Learning

Research History

Please see CV.

Representative Research Achievements

Efficient recursive least squares solver for rank-deficient matrices
R. Staub, S. N. Steinmann, Appl. Math. Comput., 2021, 399, 125996
DOI: 10.1016/j.amc.2021.125996

DockOnSurf: A Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces
C. Martí, S. Blanck, R. Staub, S. Loehlé, C. Michel, S. N. Steinmann, J. Chem. Inf. Model., 2021, 61, 3386-3396
DOI: 10.1021/acs.jcim.1c00256

Parameter-free coordination numbers for solutions and interfaces
R. Staub, S. N. Steinmann, J. Chem. Phys., 2020, 152, 024124
DOI: 10.1063/1.5135696

Water adlayers on noble metal surfaces: Insights from energy decomposition analysis
P. Clabaut, R. Staub, J. Galiana, E. Antonetti, S. N. Steinmann, J. Chem. Phys., 2020, 153, 054703
DOI: 10.1063/5.0013040

Energy Decomposition Analysis for Metal Surface–Adsorbate Interactions by Block Localized Wave Functions
R. Staub, M. Iannuzzi, R. Z. Khaliullin, S. N. Steinmann, J. Chem. Theory Comput., 2019, 15, 265-275
DOI: 10.1021/acs.jctc.8b00957

Related Research

Publications

2024

  • Chemography-Guided Analysis of a Reaction Path Network for Ethylene Hydrogenation with a Model Wilkinson's Catalyst
    P. Gantzer, R. Staub, Y. Harabuchi, S. Maeda, A. Varnek, Molecular Informatics, 2024, , e202400063
    DOI: 10.1002/minf.202400063

2023

  • Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case
    R. Staub, P. Gantzer, Y. Harabuchi, S. Maeda, A. Varnek, Molecules, 2023, 28 (11), 4477
    DOI: 10.3390/molecules28114477