About the Research
Research Theme
Synthetic organic chemistry (development of new chemical reactions, catalyst design)
Keyword
Research History
See my CV & Publication List.
Research Outline
In our research group, we mainly focus on developing new chemical transformations to synthesize high-value-added molecules (e.g., amino acids) guided by quantum chemical calculations (Gaussian and the AFIR method implemented in the GRRM program). We intensively investigate various kinds thermal/light/electrochemical-promoted reactions and catalytic transformations, such as:
Ionic transformations: Controlling highly reactive species such as singlet carbenes, nitrenes, benzynes, and carbocations can lead to the development of new ionic transformations. Using these transient intermediates allows efficiently incorporating carbon dioxide (CO2), an abundant, inexpensive, nontoxic, and renewable C1 source, into more complex molecules.
- Nat. Synth. 2022, 1 (10), 804-814. DOI: 10.1038/s44160-022-00128-y
- Chem. Eur. J. 2021, 27 (39), 10040-10047. DOI: 10.1002/chem.202100812
- Chem. Sci. 2020, 11 (29), 7569-7577. DOI: 10.1039/D0SC02089C
- Angew. Chem., Int. Ed. 2011, 50 (6), 1393-1396. DOI: 10.1002/anie.201006422
Radical transformations: The behavior of radical species can be estimated by quantum chemical calculations, which may lead to the development of novel free-radical-mediated transformations. To generate proposed radicals from neutral molecules, we have already used LEDs that emit light of varying wave length (from UV to red light), various kinds of photocatalysts, electrochemical devices, and a flow system that can control the reactivity of the generated radicals. Specifically, we are now focusing on ethylene difunctionalization via a radical intermediate under irradiation with visible light.
Photochemical reactions:
- JACS Au 2024, 4, DOI: 10.1021/jacsau.4c00347
- Precis. Chem. 2024, 2 (3), 88-95. DOI: 10.1021/prechem.3c00117
- Angew. Chem., Int. Ed. 2023, 62 (23), e202303435. DOI: 10.1002/anie.202303435
- ACS Catal. 2023, 13 (4), 2482-2488. DOI: 10.1021/acscatal.2c06192
- Angew. Chem., Int. Ed. 2023, 62 (1), e202211936. DOI: 10.1002/anie.202211936
- Nat. Commun. 2022, 13, 7034. DOI: 10.1038/s41467-022-34546-5
- ACS Omega 2021, 6 (49), 33846-33854. DOI: 10.1021/acsomega.1c05102
Electrochemical reactions:
- Org. Lett. 2023, 25 (23), 4231-4235. DOI: 10.1021/acs.orglett.3c01033
- J. Am. Chem. Soc. 2022, 144 (8), 3685-3695. DOI: 10.1021/jacs.1c13032
Pericyclic reactions: Pericyclic reactions are perfectly atom-economical transformations, in which the reaction modes can be precisely predicted by quantum chemical calculations using the AFIR method. The AFIR method can successfully predict products or reactants whose stereochemistry is governed by the Woodward-Hoffmann rules. Taking advantage of this excellent calculation platform, we are currently developing new pericyclic reactions.
- J. Am. Chem. Soc. 2022, 144 (50), 22985-23000. DOI: 10.1021/jacs.2c09830
Transition-metal-catalyzed transformations: We are currently also focusing on the development of new functionalization methods for C-H and C-C bonds that are difficult to cleave without transition-metal catalysts. To realize these transformations, effective catalyst structures can be designed based on quantum chemical calculations. In this respect, transition-metal-catalyzed CO2 incorporation triggered by the catalytic cleavage of C-H bonds is studied to synthesize high-value-added carboxylic acids from simple starting materials. Furthermore, we have started a new project for the development of new chemical transformations promoted by artificial metalloenzymes including Fe, Ir, etc.
- Chem. Asian J. 2021, 16 (24), 4072-4080. DOI: 10.1002/asia.202100989
- Adv. Synth. Catal. 2020, 362 (6), 1275-1280. DOI: 10.1002/adsc.201901533
- J. Am. Chem. Soc. 2017, 139 (17), 6094-6097. DOI: 10.1021/jacs.7b02775
- Chem. Eur. J. 2015, 21 (46), 16391-16394. DOI: 10.1002/chem.201503359
Our reviews:
- Chem. Sci. 2023, 14 (42), 11601-11616. DOI: 10.1039/D3SC03319H
- Asian J. Org. Chem. 2022, 11 (5), e202200082. DOI: 10.1002/ajoc.202200082
- Chem. Asian J. 2019, 14 (12), 2038-2047. DOI: 10.1002/asia.201900379
Representative Research Achievements
- Krishnan, C. G.; Takano, H.; Katsuyama, H.; Kanna, W.; Hayashi, H.; Mita, T.* “Strain-Releasing Ring-Opening Diphosphinations for the Synthesis of Diphosphine Ligands with Cyclic Backbones” JACS Au 2024, 4,
DOI: 10.1021/jacsau.4c00347 - Mangaonkar, S. R.; Hayashi, H.; Kanna, W.; Debbarma, S.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “γ‑Butyrolactone Synthesis from Allylic Alcohols Using the CO2 Radical Anion” Precis. Chem. 2024, 2 (3), 88-95.
DOI: 10.1021/prechem.3c00117 - Rawat, V. K.; Hayashi, H.; Katsuyama, H.; Mangaonkar, S. R.; Mita, T.* “Revisiting the Electrochemical Carboxylation of Naphthalene with CO2: Selective Monocarboxylation of 2-Substituted Naphthalenes” Org. Lett. 2023, 25 (23), 4231-4235.
DOI: 10.1021/acs.orglett.3c01033 - Takano, H.; Katsuyama, H.; Hayashi, H.; Harukawa, M.; Tsurui, M.; Shoji, S.; Hasegawa, Y.; Maeda, S.; Mita, T.* “Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands” Angew. Chem., Int. Ed. 2023, 62 (23), e202303435.
DOI: 10.1002/anie.202303435 - Mangaonkar, S. R.; Hayashi, H.; Takano, H.; Kanna, W.; Maeda, S.; Mita, T.* “Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics” ACS Catal. 2023, 13 (4), 2482-2488.
DOI: 10.1021/acscatal.2c06192 - Harabuchi, Y.*; Hayashi, H.; Takano, H.; Mita, T.; Maeda, S.* “Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction” Angew. Chem., Int. Ed. 2023, 62 (1), e202211936.
DOI: 10.1002/anie.202211936 - Mita, T.*; Takano, H.; Hayashi, H.; Kanna, W.; Harabuchi, Y.; Houk, K. N.; Maeda, S.* “Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets” J. Am. Chem. Soc. 2022, 144 (50), 22985-23000.
DOI: 10.1021/jacs.2c09830 - Takano, H.; Katsuyama, H.; Hayashi, H.; Kanna, W.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “A Theory-driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene” Nat. Commun. 2022, 13, 7034.
DOI: 10.1038/s41467-022-34546-5 - Hayashi, H.; Katsuyama, H.; Takano, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “In Silico Reaction Screening with Difluorocarbene for N-Difluoroalkylative Dearomatization of Pyridines” Nat. Synth. 2022, 1 (10), 804-814.
DOI: 10.1038/s44160-022-00128-y - You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.*; Mita, T.* “Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials” J. Am. Chem. Soc. 2022, 144 (8), 3685-3695.
DOI: 10.1021/jacs.1c13032 - Takano, H.; You, Y.; Hayashi, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene” ACS Omega 2021, 6 (49), 33846-33854.
DOI: 10.1021/acsomega.1c05102 - Kanna, W.; Harabuchi, Y.; Takano, H.; Hayashi, H.; Maeda, S.*; Mita, T.* “Carboxylation of a Palladacycle Formed via C(sp3)-H Activation: Theory-Driven Reaction Design” Chem. Asian J. 2021, 16 (24), 4072-4080.
DOI: 10.1002/asia.202100989 - Hayashi, H.; Takano, H.; Katsuyama, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Application” Chem. Eur. J. 2021, 27 (39), 10040-10047.
DOI: 10.1002/chem.202100812 - Mita, T.*; Harabuchi, Y.; Maeda, S.* “Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations” Chem. Sci. 2020, 11 (29), 7569-7577.
DOI: 10.1039/D0SC02089C - Mita, T.*; Uchiyama, M.; Sato, Y.* “Catalytic Intramolecular Coupling of Ketoalkenes by Allylic C(sp3)-H Bond Cleavage: Synthesis of Five- and Six-Membered Carbocyclic Compounds” Adv. Synth. Catal. 2020, 362 (6), 1275-1280.
DOI: 10.1002/adsc.201901533 - Mita, T.*; Ishii, S.; Higuchi, Y.; Sato, Y.* “Pd-Catalyzed Dearomative Carboxylation of Indolylmethanol Derivatives” Org. Lett. 2018, 20 (23), 7603-7606.
DOI: 10.1021/acs.orglett.8b03337 - Michigami, K.; Mita, T.*; Sato, Y.* “Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2” J. Am. Chem. Soc. 2017, 139 (17), 6094-6097.
DOI: 10.1021/jacs.7b02775 - Mita, T.*; Sugawara, M.; Sato, Y.* “One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration” J. Org. Chem. 2016, 81 (12), 5236-5243.
DOI: 10.1021/acs.joc.6b00837 - Mita, T.*; Higuchi, Y.; Sato, Y.* “Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2” Chem. Eur. J. 2015, 21 (46), 16391-16394.
DOI: 10.1002/chem.201503359 - Mita, T.*; Sugawara, M.; Saito, K.; Sato, Y.* “Catalytic Enantioselective Silylation of N-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO2 via Stereospecific Carboxylation of α-Amino Silanes” Org. Lett. 2014, 16 (11), 3028-3031.
DOI: 10.1021/ol501143c - Mita, T.*; Ikeda, Y.; Michigami, K.; Sato, Y.* “Iridium-Catalyzed Triple C(sp3)-H Borylations: Construction of Triborylated Sp3-Carbon Centers” Chem. Commun. 2013, 49 (49), 5601-5603.
DOI: 10.1039/C3CC42675K - Mita, T.*; Chen, J.; Sugawara, M.; Sato, Y.* “One-Pot Synthesis of α-Amino Acids from Imines through CO2Incorporation: An Alternative Method for Strecker Synthesis” Angew. Chem. Int. Ed. 2011, 50 (6), 1393-1396.
DOI: 10.1002/anie.201006422
Related Research
- Development of a New Method for the Chemical Synthesis of Diphosphine Ligands from Strained Small Molecules
- Method developed for synthesizing γ-lactones from allylic alcohols and formate salts under light irradiation
- ICReDD researchers summarize state-of-the-art in computer-guided development of reaction methodologies
- Synthesis of bicyclo[1.1.1]pentane-based, straight-shaped diphosphine ligands
- Press Release It Takes Two: cooperating catalysts provide new route for utilizing formate salts
- Press Release Automated chemical reaction prediction: now in stereo
- Method for automated reaction path search of photoredox reactions enables determination of the Knowles hydroamination mechanism
- Press Release Simplified process shines light on new catalyst opportunities
- Press Release Simulations provide map to treasure trove of fluorinated compounds
- Press Release CO2 recycling and efficient drug development—tackling two problems with one reaction
- Computational-chemistry-guided development of the difunctionalization of ethylene gas: selective incorporation of two ethylene molecules
- Carboxylation of a Palladacycle Formed via C(sp3)–H Activation: AFIR Theory‐Driven Reaction Design
- Computationally Designed Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and Carbon Dioxide
- Novel computer-assisted chemical synthesis method cuts research time and cost
Publications
2023
-
Quantum Chemical Calculations for Reaction Prediction in the Development of Synthetic Methodologies
, S. Maeda, T. Mita, Chem. Sci., 2023, 14, 11601-11616
DOI: 10.1039/d3sc03319H
-
Frontispiece: Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, 62,
DOI: 10.1002/anie.202382362
-
Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method
, Y. Harabuchi, H. Hayashi, T. Mita, Annual Review of Physical Chemistry, 2023, 74, 287-311
DOI: 10.1146/annurev-physchem-102822-101025
-
Synthesis of Bicyclo [1.1.1] Pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, ,
DOI: 10.1002/anie.202303435
-
Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics
, H. Hayashi, H. Takano, W. Kanna, S. Maeda, T. Mita, Acs Catalysis, 2023, 13, 4, 2482-2488
DOI: 10.1021/acscatal.2c06192
2022
-
Catalytic Carbonyl Allylation Using Terminal Alkenes as Nucleophiles
, Mita, T., Sato, Y., J. Syn. Org. Chem. Jpn., 2022, 80 (3), 210-221
DOI: 10.5059/yukigoseikyokaishi.80.210
-
Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets
, H. Takano, H. Hayashi, W. Kanna, Y. Harabuchi, K. N. Houk, S. Maeda, J. Am. Chem. Soc., 2022, 144, 50, 22985–23000
DOI: 10.1021/jacs.2c09830
-
Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction
, H. Hayashi, H. Takano, T. Mita, S. Maeda, Angew. Chem., Int. Ed., 2022, ,
DOI: 10.1002/anie.202211936
-
A Theory-Driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene
, H. Katsuyama, H. Hayashi, W. Kanna, Y. Harabuchi, S. Maeda, T. Mita, Nat. Commun., 2022, 13, Article number: 7034 (2022)
DOI: 10.1038/s41467-022-34546-5
-
Catalytic Umpolung Carboxylation of Pi-AllylPalladium Species with Carbon Dioxide
, Y. Higuchi, Y. Sato, J. Syn. Org. Chem. Jpn., 2022, 80, 806-816
DOI: 10.5059/yukigoseikyokaishi.80.806
-
Recent Advances in the Catalytic Umpolung Carboxylation of Allylic Alcohol Derivatives with Carbon Dioxide
, T. Mita, Asian Journal of Organic Chemistry, 2022, 11, e202200082
DOI: 10.1002/ajoc.202200082
-
Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials
, W. Kanna, H. Takano, H. Hayashi, S. Maeda, T. Mita, J. Am. Chem. Soc., 2022, 144, 3685-3695
DOI: 10.1021/jacs.1c13032
2021
-
Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene
, Y. You, H. Hayashi, Y. Harabuchi, S. Maeda, T. Mita, Acs Omega, 2021, 6, 33846-33854
DOI: 10.1021/acsomega.1c05102
-
Carboxylation of a Palladacycle Formed via C(sp(3))-H Activation: Theory-Driven Reaction Design
, Y. Harabuchi, H. Takano, H. Hayashi, S. Maeda, T. Mita, Chem. Asian J., 2021, 16, 4072-4080
DOI: 10.1002/asia.202100989
-
Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Applications
, H. Takano, H. Katsuyama, Y. Harabuchi, S. Maeda, T. Mita, Chem. Eur. J., 2021, 27, 10040-10047
DOI: 10.1002/chem.202100812
-
Chemoselective Cleavage of Si-C(sp(3)) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)
, N. Komami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. Matsunaga, J. Am. Chem. Soc., 2021, 143, 103-108
DOI: 10.1021/jacs.0c11645
2020
-
Catalytic Intramolecular Coupling of Ketoalkenes by Allylic C(sp3)-H Bond Cleavage: Synthesis of Five- and Six-Membered Carbocyclic Compounds
, M. Uchiyama, Y. Sato, Adv. Synth. Catal., 2020, 362, 1275-1280
DOI: 10.1002/adsc.201901533
-
Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations
, Y. Harabuchi, S. Maeda, Chem. Sci., 2020, 11, 7569-7577
DOI: 10.1039/d0sc02089c
-
General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis
, M. Uesugi, R. Takahashi, T. Mita, T. Ishiyama, K. Kubota, H. Ito, J. Am. Chem. Soc., 2020, 142, 14125-14133
DOI: 10.1021/jacs.0c03011
2019
-
Catalytic Carboxylation of Heteroaromatic Compounds: Double and Single Carboxylation with CO2
, H. Masutani, S. Ishii, Y. Sato, Synlett, 2019, 30, 841-844
DOI: 10.1055/s-0037-1612414
-
Syntheses of α-Amino Acids by Using CO2 as a C1 Source
, Y. Sato, Chem. Asian J., 2019, 14, 2038-2047
DOI: 10.1002/asia.201900379
2018
-
Pd-Catalyzed Dearomative Carboxylation of Indolylmethanol Derivatives
, S. Ishii, Y. Higuchi, Y. Sato, Org. Lett., 2018, 20, 7603-7606
DOI: 10.1021/acs.orglett.8b03337
-
Cobalt-Catalyzed Nucleophilic Addition of the Allylic C(sp3)-H Bond of Simple Alkenes to Ketones
, M. Uchiyama, K. Michigami, Y. Sato, Beilstein J. Org. Chem., 2018, 14, 2012-2017
DOI: 10.3762/bjoc.14.176
2017
-
Palladium-Catalyzed Intramolecular Arylative Carboxylation of Allenes with CO2 for the Construction of 3-Substituted Indole-2-Carboxylic Acids
, T. Mita, Y. Sato, Org. Lett., 2017, 19, 2710-2713
DOI: 10.1021/acs.orglett.7b01055
-
Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2
, T. Mita, Y. Sato, J. Am. Chem. Soc., 2017, 139, 6094-6097
DOI: 10.1021/jacs.7b02775
-
Cobalt-Catalyzed Direct Addition of Allylic C(sp3)-H Bonds to Ketones
, S. Hanagata, K. Michigami, Y. Sato, Org. Lett., 2017, 19, 5876-5879
DOI: 10.1021/acs.orglett.7b02871
2016
-
Stereoretentive Addition of N-Tert-Butylsulfonyl-α-Amido Silanes to Aldehydes, Ketones, α,β-Unsaturated Esters, and Imines
, K. Saito, M. Sugawara, Y. Sato, Chem. Asian J., 2016, 11, 1528-1531
DOI: 10.1002/asia.201600270
-
One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration
, M. Sugawara, Y. Sato, J. Org. Chem., 2016, 81, 5236-5243
DOI: 10.1021/acs.joc.6b00837
-
Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2
, H. Tanaka, Y. Higuchi, Y. Sato, Org. Lett., 2016, 18, 2754-2757
DOI: 10.1021/acs.orglett.6b01231
2015
-
Development of Catalytic C(sp3)-H Silylation and Triborylation Followed by Carboxylation with CO2
, Yuki Gosei Kagaku Kyokaishi, 2015, 73, 810-820
DOI: 10.5059/yukigoseikyokaishi.73.810
-
Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2
, Y. Higuchi, Y. Sato, Chem. Eur. J., 2015, 21, 16391-16394
DOI: 10.1002/chem.201503359
-
A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions
, K. Suga, K. Sato, Y. Sato, Org. Lett., 2015, 17, 5276-5279
DOI: 10.1021/acs.orglett.5b02645
2014
-
Synthesis of Arylglycines from CO2 through α-Amino Organomanganese Species
, J. Chen, Y. Sato, Org. Lett., 2014, 16, 2200-2203
DOI: 10.1021/ol500701n
-
Carboxylation with CO2 via Brook Rearrangement: Preparation of α-Hydroxy Acid Derivatives
, Y. Higuchi, Y. Sato, Org. Lett., 2014, 16, 14-17
DOI: 10.1021/ol403099f
-
Catalytic Enantioselective Silylation of N-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO2 via Stereospecific Carboxylation of α-Amino Silanes
, M. Sugawara, K. Saito, Y. Sato, Org. Lett., 2014, 16, 3028-3031
DOI: 10.1021/ol501143c
-
Ruthenium-Catalyzed C-H Silylation of 1-Arylpyrazole Derivatives and Fluoride-Mediated Carboxylation: Use of Two Nitrogen Atoms of the Pyrazole Group
, H. Tanaka, K. Michigami, Y. Sato, Synlett, 2014, 25, 1291-1294, 4 pp.
DOI: 10.1055/s-0033-1341230
2013
-
One-Step Synthesis of Racemic α-Amino Acids from Aldehydes, Amine Components, and Gaseous CO2 by the Aid of a Bismetal Reagent
, Y. Higuchi, Y. Sato, Chem. Eur. J., 2013, 19, 1123-1128
DOI: 10.1002/chem.201202332
-
Iridium-Catalyzed Triple C(sp3)-H Borylations: Construction of Triborylated sp3-Carbon Centers
, Y. Ikeda, K. Michigami, Y. Sato, Chem. Commun., 2013, 49, 5601-5603
DOI: 10.1039/c3cc42675k
-
Iridium- and Rhodium-Catalyzed Dehydrogenative Silylations of C(sp3)-H Bonds Adjacent to a Nitrogen Atom Using Hydrosilanes
, K. Michigami, Y. Sato, Chem. Asian J., 2013, 8, 2970-2973
DOI: 10.1002/asia.201300930
-
One-Pot Synthesis of α-Amino Acids from CO2 Using Bismetal Reagents
, Y. Sato, Yuki Gosei Kagaku Kyokaishi, 2013, 71, 1163-1171
DOI: 10.5059/yukigoseikyokaishi.71.1163
2012
-
One-Pot Synthesis of α-Amino Acids from CO2 Using a Bismetal Reagent with Si-B Bond
, J. Chen, M. Sugawara, Y. Sato, Org. Lett., 2012, 14, 6202-6205
DOI: 10.1021/ol302952r
-
Convenient and Practical Synthesis of α-Amido Stannanes
, Y. Higuchi, Y. Sato, Synthesis, 2012, 44, 194-200
DOI: 10.1055/s-0031-1289597
-
Sequential Protocol for C(sp3)-H Carboxylation with CO2: Transition-Metal-Catalyzed Benzylic C-H Silylation and Fluoride-Mediated Carboxylation
, K. Michigami, Y. Sato, Org. Lett., 2012, 14, 3462-3465
DOI: 10.1021/ol301431d
-
Synthesis of Arylglycine and Mandelic Acid Derivatives through Carboxylations of α-Amido and α-Acetoxy Stannanes with Carbon Dioxide
, M. Sugawara, H. Hasegawa, Y. Sato, J. Org. Chem., 2012, 77, 2159-2168
DOI: 10.1021/jo202597p
2011
-
One-Pot Synthesis of α-Amino Acids from Imines through CO2 Incorporation: An Alternative Method for Strecker Synthesis
, J. Chen, M. Sugawara, Y. Sato, Angew. Chem., Int. Ed., 2011, 50, 1393-1396
DOI: 10.1002/anie.201006422
-
Practical Synthesis of N-Boc- and N-Cbz-α-Amido Stannanes from α-Amido Sulfones Using TMSSnBu3 and CsF
, Y. Higuchi, Y. Sato, Org. Lett., 2011, 13, 2354-2357
DOI: 10.1021/ol200599d
2009
-
Bifunctional Asymmetric Catalysis with Hydrogen Chloride: Enantioselective Ring Opening of Aziridines Catalyzed by a Phosphinothiourea
, E. N. Jacobsen, Synlett, 2009, , 1680-1684
DOI: 10.1055/s-0029-1217344
2007
-
Toward a Rational Design of the Assembly Structure of Polymetallic Asymmetric Catalysts: Design, Synthesis, and Evaluation of New Chiral Ligands for Catalytic Asymmetric Cyanation Reactions
, T. Mita, K. Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shibasaki, Tetrahedron, 2007, 63, 5820-5831
DOI: 10.1016/j.tet.2007.02.081
-
Second Generation Catalytic Asymmetric Synthesis of Tamiflu: Allylic Substitution Route
, N. Fukuda, F. X. Roca, M. Kanai, M. Shibasaki, Org. Lett., 2007, 9, 259-262
DOI: 10.1021/ol062663c
2006
-
Key Role of the Lewis Base Position in Asymmetric Bifunctional Catalysis: Design and Evaluation of a New Ligand for Chiral Polymetallic Catalysts
, T. Mita, K. Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 16438-16439
DOI: 10.1021/ja067003h
-
De Novo Synthesis of Tamiflu via a Catalytic Asymmetric Ring-Opening of meso-Aziridines with TMSN3
, T. Mita, N. Fukuda, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 6312-6313
DOI: 10.1021/ja061696k
-
Assembly State of Catalytic Modules as Chiral Switches in Asymmetric Strecker Amino Acid Synthesis
, T. Mita, M. Kanai, B. Therrien, M. Kawano, K. Yamaguchi, H. Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 6768-6769
DOI: 10.1021/ja060841r
2005
-
Catalytic Enantioselective Reactions by the Chiral Cobalt Complexes as Lewis Acid Catalysts
, T. Mita, I. Iwakura, T. Ikeno, T. Yamada, Yuki Gosei Kagaku Kyokaishi, 2005, 63, 604-615
DOI: 10.5059/yukigoseikyokaishi.63.604
-
Catalytic Enantioselective Desymmetrization of meso-N-Acylaziridines with TMSCN
, I. Fujimori, R. Wada, J. Wen, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 11252-11253
DOI: 10.1021/ja053486y
-
Catalytic Enantioselective Conjugate Addition of Cyanide to α,β-Unsaturated N-Acylpyrroles
, K. Sasaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 514-515
DOI: 10.1021/ja043424s
2003
-
Enantioselective 1,3-Dipolar Cycloaddition Reaction of Nitrones with α,β-Unsaturated Aldehydes Catalyzed by Cationic 3-Oxobutylideneaminatocobalt(III) Complexes
, N. Ohtsuki, T. Mita, Y. Kogami, T. Ashizawa, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2003, 76, 2197-2207
DOI: 10.1246/bcsj.76.2197
2002
-
Enantioselective 1,3-Dipolar Cycloaddition of Nitrones Catalyzed by Optically Active Cationic Cobalt(III) Complexes
, N. Ohtsuki, T. Ikeno, T. Yamada, Org. Lett., 2002, 4, 2457-2460
DOI: 10.1021/ol026079p
2001
-
Highly Active 3-Oxobutylideneaminatocobalt Complex Catalysts for an Enantioselective Hetero Diels-Alder Reaction
, T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2001, 74, 1333-1342
DOI: 10.1246/bcsj.74.1333
2000
-
Optically Active Cationic Cobalt(III) Complexes: Highly Efficient Catalysts for Enantioselective Hetero Diels-Alder Reaction
, T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Chem. Lett., 2000, , 824-825
DOI: 10.1246/cl.2000.824
-
Optically Active Aldiminato Cobalt(II) Complex Catalyst for Enantioselective Hetero-Diels-Alder Reaction
, S. Kezuka, T. Mita, T. Ikeno, Heterocycles, 2000, 52, 1041-1045
DOI: 10.3987/COM-99-S126