MITA, Tsuyoshi

thumbnail image
MITA, Tsuyoshi
Professor
Chief (Mixed-lab)

About the Research

Research Theme

Synthetic organic chemistry (development of new chemical reactions, catalyst design)

Keyword

Development of new chemical reactions, Carbon dioxide fixation, Amino acids
Research History

See my CV & Publication List.

Research Outline

In our research group, we mainly focus on developing new chemical transformations to synthesize high-value-added molecules (e.g., amino acids) guided by quantum chemical calculations (Gaussian and the AFIR method implemented in the GRRM program). We intensively investigate various kinds thermal/light/electrochemical-promoted reactions and catalytic transformations, such as:

Ionic transformations: Controlling highly reactive species such as singlet carbenes, nitrenes, benzynes, and carbocations can lead to the development of new ionic transformations. Using these transient intermediates allows efficiently incorporating carbon dioxide (CO2), an abundant, inexpensive, nontoxic, and renewable C1 source, into more complex molecules.

Radical transformations: The behavior of radical species can be estimated by quantum chemical calculations, which may lead to the development of novel free-radical-mediated transformations. To generate proposed radicals from neutral molecules, we have already used LEDs that emit light of varying wave length (from UV to red light), various kinds of photocatalysts, electrochemical devices, and a flow system that can control the reactivity of the generated radicals. Specifically, we are now focusing on ethylene difunctionalization via a radical intermediate under irradiation with visible light.

     Photochemical reactions:

     Electrochemical reactions:

Pericyclic reactions: Pericyclic reactions are perfectly atom-economical transformations, in which the reaction modes can be precisely predicted by quantum chemical calculations using the AFIR method. The AFIR method can successfully predict products or reactants whose stereochemistry is governed by the Woodward-Hoffmann rules. Taking advantage of this excellent calculation platform, we are currently developing new pericyclic reactions.

Transition-metal-catalyzed transformations: We are currently also focusing on the development of new functionalization methods for C-H and C-C bonds that are difficult to cleave without transition-metal catalysts. To realize these transformations, effective catalyst structures can be designed based on quantum chemical calculations. In this respect, transition-metal-catalyzed CO2 incorporation triggered by the catalytic cleavage of C-H bonds is studied to synthesize high-value-added carboxylic acids from simple starting materials. Furthermore, we have started a new project for the development of new chemical transformations promoted by artificial metalloenzymes including Fe, Ir, etc.

Our reviews:

Representative Research Achievements

  • Krishnan, C. G.; Takano, H.; Katsuyama, H.; Kanna, W.; Hayashi, H.; Mita, T.* “Strain-Releasing Ring-Opening Diphosphinations for the Synthesis of Diphosphine Ligands with Cyclic Backbones” JACS Au 2024, 4
    DOI: 10.1021/jacsau.4c00347
  • Mangaonkar, S. R.; Hayashi, H.; Kanna, W.; Debbarma, S.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “γ‑Butyrolactone Synthesis from Allylic Alcohols Using the CO2 Radical Anion” Precis. Chem. 2024, 2 (3), 88-95.
    DOI: 10.1021/prechem.3c00117
  • Rawat, V. K.; Hayashi, H.; Katsuyama, H.; Mangaonkar, S. R.; Mita, T.* “Revisiting the Electrochemical Carboxylation of Naphthalene with CO2: Selective Monocarboxylation of 2-Substituted Naphthalenes” Org. Lett. 2023, 25 (23), 4231-4235.
    DOI: 10.1021/acs.orglett.3c01033
  • Takano, H.; Katsuyama, H.; Hayashi, H.; Harukawa, M.; Tsurui, M.; Shoji, S.; Hasegawa, Y.; Maeda, S.; Mita, T.* “Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands” Angew. Chem., Int. Ed. 2023, 62 (23), e202303435.
    DOI: 10.1002/anie.202303435
  • Mangaonkar, S. R.; Hayashi, H.; Takano, H.; Kanna, W.; Maeda, S.; Mita, T.* “Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics” ACS Catal. 2023, 13 (4), 2482-2488.
    DOI: 10.1021/acscatal.2c06192
  • Harabuchi, Y.*; Hayashi, H.; Takano, H.; Mita, T.; Maeda, S.* “Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction” Angew. Chem., Int. Ed. 202362 (1), e202211936.
    DOI: 10.1002/anie.202211936
  • Mita, T.*; Takano, H.; Hayashi, H.; Kanna, W.; Harabuchi, Y.; Houk, K. N.; Maeda, S.* “Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets” J. Am. Chem. Soc. 2022, 144 (50), 22985-23000.
    DOI: 10.1021/jacs.2c09830
  • Takano, H.; Katsuyama, H.; Hayashi, H.; Kanna, W.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “A Theory-driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene” Nat. Commun. 2022, 13, 7034.
    DOI: 10.1038/s41467-022-34546-5
  • Hayashi, H.; Katsuyama, H.; Takano, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “In Silico Reaction Screening with Difluorocarbene for N-Difluoroalkylative Dearomatization of Pyridines” Nat. Synth. 2022, 1 (10), 804-814.
    DOI: 10.1038/s44160-022-00128-y
  • You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.*; Mita, T.* “Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials” J. Am. Chem. Soc. 2022, 144 (8), 3685-3695.
    DOI: 10.1021/jacs.1c13032
  • Takano, H.; You, Y.; Hayashi, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene” ACS Omega 2021, 6 (49), 33846-33854.
    DOI: 10.1021/acsomega.1c05102
  • Kanna, W.; Harabuchi, Y.; Takano, H.; Hayashi, H.; Maeda, S.*; Mita, T.* “Carboxylation of a Palladacycle Formed via C(sp3)-H Activation: Theory-Driven Reaction Design” Chem. Asian J. 2021, 16 (24), 4072-4080.
    DOI: 10.1002/asia.202100989
  • Hayashi, H.; Takano, H.; Katsuyama, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Application” Chem. Eur. J. 2021, 27 (39), 10040-10047.
    DOI: 10.1002/chem.202100812
  • Mita, T.*; Harabuchi, Y.; Maeda, S.* “Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations” Chem. Sci. 2020, 11 (29), 7569-7577.
    DOI: 10.1039/D0SC02089C
  • Mita, T.*; Uchiyama, M.; Sato, Y.* “Catalytic Intramolecular Coupling of Ketoalkenes by Allylic C(sp3)-H Bond Cleavage: Synthesis of Five- and Six-Membered Carbocyclic Compounds” Adv. Synth. Catal. 2020, 362 (6), 1275-1280.
    DOI: 10.1002/adsc.201901533
  • Mita, T.*; Ishii, S.; Higuchi, Y.; Sato, Y.* “Pd-Catalyzed Dearomative Carboxylation of Indolylmethanol Derivatives” Org. Lett. 2018, 20 (23), 7603-7606.
    DOI: 10.1021/acs.orglett.8b03337
  • Michigami, K.; Mita, T.*; Sato, Y.* “Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2J. Am. Chem. Soc. 2017, 139 (17), 6094-6097.
    DOI: 10.1021/jacs.7b02775
  • Mita, T.*; Sugawara, M.; Sato, Y.* “One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration” J. Org. Chem. 2016, 81 (12), 5236-5243.
    DOI: 10.1021/acs.joc.6b00837
  • Mita, T.*; Higuchi, Y.; Sato, Y.* “Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2 Chem. Eur. J. 2015, 21 (46), 16391-16394.
    DOI: 10.1002/chem.201503359
  • Mita, T.*; Sugawara, M.; Saito, K.; Sato, Y.* “Catalytic Enantioselective Silylation of N-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO2 via Stereospecific Carboxylation of α-Amino Silanes” Org. Lett. 2014, 16 (11), 3028-3031.
    DOI: 10.1021/ol501143c
  • Mita, T.*; Ikeda, Y.; Michigami, K.; Sato, Y.* “Iridium-Catalyzed Triple C(sp3)-H Borylations: Construction of Triborylated Sp3-Carbon Centers” Chem. Commun. 2013, 49 (49), 5601-5603.
    DOI: 10.1039/C3CC42675K
  • Mita, T.*; Chen, J.; Sugawara, M.; Sato, Y.* “One-Pot Synthesis of α-Amino Acids from Imines through CO2Incorporation: An Alternative Method for Strecker Synthesis” Angew. Chem. Int. Ed. 2011, 50 (6), 1393-1396.
    DOI: 10.1002/anie.201006422

Related Research

Publications

2024

  • Annulation Producing Diverse Heterocycles Promoted by Cobalt Hydride
    T. Sugimura, R. Yamada, W. Kanna, T. Mita, S. Maeda, B. Szarlan, H. Shigehisa, Acs Catalysis, 2024, 14, 15514-15520
    DOI: 10.1021/acscatal.4c05195
  • Strain-Releasing Ring-Opening Diphosphinations for the Synthesis of Diphosphine Ligands with Cyclic Backbones
    C. Krishnan, H. Takano, H. Katsuyama, W. Kanna, H. Hayashi, T. Mita, Jacs Au, 2024, 4, 10, 3777–3787
    DOI: 10.1021/jacsau.4c00347
  • Trans-Selective Carboxylative Cyclization of 1,6-Dienes Using the CO2 Radical Anion
    Y. Song, H. Hayashi, S. Mangaonkar, T. Mita, Chem. Lett., 2024, 53, 8, upae149
    DOI: 10.1093/chemle/upae149
  • γ-Butyrolactone Synthesis from Allylic Alcohols Using the CO2 Radical Anion
    S. Mangaonkar, H. Hayashi, W. Kanna, S. Debbarma, Y. Harabuchi, S. Maeda, T. Mita, Precis. Chem., 2024, 2, 3, 88-95
    DOI: 10.1021/prechem.3c00117

2023

  • Quantum Chemical Calculations for Reaction Prediction in the Development of Synthetic Methodologies
    H. Hayashi, S. Maeda, T. Mita, Chem. Sci., 2023, 14, 11601-11616
    DOI: 10.1039/d3sc03319H
  • Frontispiece: Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
    H. Takano, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, 62,
    DOI: 10.1002/anie.202382362
  • Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method
    S. Maeda, Y. Harabuchi, H. Hayashi, T. Mita, Annual Review of Physical Chemistry, 2023, 74, 287-311
    DOI: 10.1146/annurev-physchem-102822-101025
  • Synthesis of Bicyclo [1.1.1] Pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
    H. Takano, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, ,
    DOI: 10.1002/anie.202303435
  • Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics
    S. R. Mangaonkar, H. Hayashi, H. Takano, W. Kanna, S. Maeda, T. Mita, Acs Catalysis, 2023, 13, 4, 2482-2488
    DOI: 10.1021/acscatal.2c06192

2022

  • Catalytic Carbonyl Allylation Using Terminal Alkenes as Nucleophiles
    Michigami, K., Mita, T., Sato, Y., J. Syn. Org. Chem. Jpn., 2022, 80 (3), 210-221
    DOI: 10.5059/yukigoseikyokaishi.80.210
  • Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets
    T. Mita, H. Takano, H. Hayashi, W. Kanna, Y. Harabuchi, K. N. Houk, S. Maeda, J. Am. Chem. Soc., 2022, 144, 50, 22985–23000
    DOI: 10.1021/jacs.2c09830
  • Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction
    Y. Harabuchi, H. Hayashi, H. Takano, T. Mita, S. Maeda, Angew. Chem., Int. Ed., 2022, ,
    DOI: 10.1002/anie.202211936
  • A Theory-Driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene
    H. Takano, H. Katsuyama, H. Hayashi, W. Kanna, Y. Harabuchi, S. Maeda, T. Mita, Nat. Commun., 2022, 13, Article number: 7034 (2022)
    DOI: 10.1038/s41467-022-34546-5
  • Catalytic Umpolung Carboxylation of Pi-AllylPalladium Species with Carbon Dioxide
    T. Mita, Y. Higuchi, Y. Sato, J. Syn. Org. Chem. Jpn., 2022, 80, 806-816
    DOI: 10.5059/yukigoseikyokaishi.80.806
  • Recent Advances in the Catalytic Umpolung Carboxylation of Allylic Alcohol Derivatives with Carbon Dioxide
    Y. You, T. Mita, Asian Journal of Organic Chemistry, 2022, 11, e202200082
    DOI: 10.1002/ajoc.202200082
  • Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials
    Y. You, W. Kanna, H. Takano, H. Hayashi, S. Maeda, T. Mita, J. Am. Chem. Soc., 2022, 144, 3685-3695
    DOI: 10.1021/jacs.1c13032

2021

  • Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene
    H. Takano, Y. You, H. Hayashi, Y. Harabuchi, S. Maeda, T. Mita, Acs Omega, 2021, 6, 33846-33854
    DOI: 10.1021/acsomega.1c05102
  • Carboxylation of a Palladacycle Formed via C(sp(3))-H Activation: Theory-Driven Reaction Design
    W. Kanna, Y. Harabuchi, H. Takano, H. Hayashi, S. Maeda, T. Mita, Chem. Asian J., 2021, 16, 4072-4080
    DOI: 10.1002/asia.202100989
  • Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Applications
    H. Hayashi, H. Takano, H. Katsuyama, Y. Harabuchi, S. Maeda, T. Mita, Chem. Eur. J., 2021, 27, 10040-10047
    DOI: 10.1002/chem.202100812
  • Chemoselective Cleavage of Si-C(sp(3)) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)
    K. Matsuoka, N. Komami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. Matsunaga, J. Am. Chem. Soc., 2021, 143, 103-108
    DOI: 10.1021/jacs.0c11645

2020

  • Catalytic Intramolecular Coupling of Ketoalkenes by Allylic C(sp3)-H Bond Cleavage: Synthesis of Five- and Six-Membered Carbocyclic Compounds
    T. Mita, M. Uchiyama, Y. Sato, Adv. Synth. Catal., 2020, 362, 1275-1280
    DOI: 10.1002/adsc.201901533
  • Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations
    T. Mita, Y. Harabuchi, S. Maeda, Chem. Sci., 2020, 11, 7569-7577
    DOI: 10.1039/d0sc02089c
  • General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis
    R. Shishido, M. Uesugi, R. Takahashi, T. Mita, T. Ishiyama, K. Kubota, H. Ito, J. Am. Chem. Soc., 2020, 142, 14125-14133
    DOI: 10.1021/jacs.0c03011

2019

  • Catalytic Carboxylation of Heteroaromatic Compounds: Double and Single Carboxylation with CO2
    T. Mita, H. Masutani, S. Ishii, Y. Sato, Synlett, 2019, 30, 841-844
    DOI: 10.1055/s-0037-1612414
  • Syntheses of α-Amino Acids by Using CO2 as a C1 Source
    T. Mita, Y. Sato, Chem. Asian J., 2019, 14, 2038-2047
    DOI: 10.1002/asia.201900379

2018

  • Pd-Catalyzed Dearomative Carboxylation of Indolylmethanol Derivatives
    T. Mita, S. Ishii, Y. Higuchi, Y. Sato, Org. Lett., 2018, 20, 7603-7606
    DOI: 10.1021/acs.orglett.8b03337
  • Cobalt-Catalyzed Nucleophilic Addition of the Allylic C(sp3)-H Bond of Simple Alkenes to Ketones
    T. Mita, M. Uchiyama, K. Michigami, Y. Sato, Beilstein J. Org. Chem., 2018, 14, 2012-2017
    DOI: 10.3762/bjoc.14.176

2017

  • Palladium-Catalyzed Intramolecular Arylative Carboxylation of Allenes with CO2 for the Construction of 3-Substituted Indole-2-Carboxylic Acids
    Y. Higuchi, T. Mita, Y. Sato, Org. Lett., 2017, 19, 2710-2713
    DOI: 10.1021/acs.orglett.7b01055
  • Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2
    K. Michigami, T. Mita, Y. Sato, J. Am. Chem. Soc., 2017, 139, 6094-6097
    DOI: 10.1021/jacs.7b02775
  • Cobalt-Catalyzed Direct Addition of Allylic C(sp3)-H Bonds to Ketones
    T. Mita, S. Hanagata, K. Michigami, Y. Sato, Org. Lett., 2017, 19, 5876-5879
    DOI: 10.1021/acs.orglett.7b02871

2016

  • Stereoretentive Addition of N-Tert-Butylsulfonyl-α-Amido Silanes to Aldehydes, Ketones, α,β-Unsaturated Esters, and Imines
    T. Mita, K. Saito, M. Sugawara, Y. Sato, Chem. Asian J., 2016, 11, 1528-1531
    DOI: 10.1002/asia.201600270
  • One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration
    T. Mita, M. Sugawara, Y. Sato, J. Org. Chem., 2016, 81, 5236-5243
    DOI: 10.1021/acs.joc.6b00837
  • Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2
    T. Mita, H. Tanaka, Y. Higuchi, Y. Sato, Org. Lett., 2016, 18, 2754-2757
    DOI: 10.1021/acs.orglett.6b01231

2015

  • Development of Catalytic C(sp3)-H Silylation and Triborylation Followed by Carboxylation with CO2
    T. Mita, Yuki Gosei Kagaku Kyokaishi, 2015, 73, 810-820
    DOI: 10.5059/yukigoseikyokaishi.73.810
  • Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2
    T. Mita, Y. Higuchi, Y. Sato, Chem. Eur. J., 2015, 21, 16391-16394
    DOI: 10.1002/chem.201503359
  • A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions
    T. Mita, K. Suga, K. Sato, Y. Sato, Org. Lett., 2015, 17, 5276-5279
    DOI: 10.1021/acs.orglett.5b02645

2014

  • Synthesis of Arylglycines from CO2 through α-Amino Organomanganese Species
    T. Mita, J. Chen, Y. Sato, Org. Lett., 2014, 16, 2200-2203
    DOI: 10.1021/ol500701n
  • Carboxylation with CO2 via Brook Rearrangement: Preparation of α-Hydroxy Acid Derivatives
    T. Mita, Y. Higuchi, Y. Sato, Org. Lett., 2014, 16, 14-17
    DOI: 10.1021/ol403099f
  • Catalytic Enantioselective Silylation of N-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO2 via Stereospecific Carboxylation of α-Amino Silanes
    T. Mita, M. Sugawara, K. Saito, Y. Sato, Org. Lett., 2014, 16, 3028-3031
    DOI: 10.1021/ol501143c
  • Ruthenium-Catalyzed C-H Silylation of 1-Arylpyrazole Derivatives and Fluoride-Mediated Carboxylation: Use of Two Nitrogen Atoms of the Pyrazole Group
    T. Mita, H. Tanaka, K. Michigami, Y. Sato, Synlett, 2014, 25, 1291-1294, 4 pp.
    DOI: 10.1055/s-0033-1341230

2013

  • One-Step Synthesis of Racemic α-Amino Acids from Aldehydes, Amine Components, and Gaseous CO2 by the Aid of a Bismetal Reagent
    T. Mita, Y. Higuchi, Y. Sato, Chem. Eur. J., 2013, 19, 1123-1128
    DOI: 10.1002/chem.201202332
  • Iridium-Catalyzed Triple C(sp3)-H Borylations: Construction of Triborylated sp3-Carbon Centers
    T. Mita, Y. Ikeda, K. Michigami, Y. Sato, Chem. Commun., 2013, 49, 5601-5603
    DOI: 10.1039/c3cc42675k
  • Iridium- and Rhodium-Catalyzed Dehydrogenative Silylations of C(sp3)-H Bonds Adjacent to a Nitrogen Atom Using Hydrosilanes
    T. Mita, K. Michigami, Y. Sato, Chem. Asian J., 2013, 8, 2970-2973
    DOI: 10.1002/asia.201300930
  • One-Pot Synthesis of α-Amino Acids from CO2 Using Bismetal Reagents
    T. Mita, Y. Sato, Yuki Gosei Kagaku Kyokaishi, 2013, 71, 1163-1171
    DOI: 10.5059/yukigoseikyokaishi.71.1163

2012

  • One-Pot Synthesis of α-Amino Acids from CO2 Using a Bismetal Reagent with Si-B Bond
    T. Mita, J. Chen, M. Sugawara, Y. Sato, Org. Lett., 2012, 14, 6202-6205
    DOI: 10.1021/ol302952r
  • Convenient and Practical Synthesis of α-Amido Stannanes
    T. Mita, Y. Higuchi, Y. Sato, Synthesis, 2012, 44, 194-200
    DOI: 10.1055/s-0031-1289597
  • Sequential Protocol for C(sp3)-H Carboxylation with CO2: Transition-Metal-Catalyzed Benzylic C-H Silylation and Fluoride-Mediated Carboxylation
    T. Mita, K. Michigami, Y. Sato, Org. Lett., 2012, 14, 3462-3465
    DOI: 10.1021/ol301431d
  • Synthesis of Arylglycine and Mandelic Acid Derivatives through Carboxylations of α-Amido and α-Acetoxy Stannanes with Carbon Dioxide
    T. Mita, M. Sugawara, H. Hasegawa, Y. Sato, J. Org. Chem., 2012, 77, 2159-2168
    DOI: 10.1021/jo202597p

2011

  • One-Pot Synthesis of α-Amino Acids from Imines through CO2 Incorporation: An Alternative Method for Strecker Synthesis
    T. Mita, J. Chen, M. Sugawara, Y. Sato, Angew. Chem., Int. Ed., 2011, 50, 1393-1396
    DOI: 10.1002/anie.201006422
  • Practical Synthesis of N-Boc- and N-Cbz-α-Amido Stannanes from α-Amido Sulfones Using TMSSnBu3 and CsF
    T. Mita, Y. Higuchi, Y. Sato, Org. Lett., 2011, 13, 2354-2357
    DOI: 10.1021/ol200599d

2009

  • Bifunctional Asymmetric Catalysis with Hydrogen Chloride: Enantioselective Ring Opening of Aziridines Catalyzed by a Phosphinothiourea
    T. Mita, E. N. Jacobsen, Synlett, 2009, , 1680-1684
    DOI: 10.1055/s-0029-1217344

2007

  • Toward a Rational Design of the Assembly Structure of Polymetallic Asymmetric Catalysts: Design, Synthesis, and Evaluation of New Chiral Ligands for Catalytic Asymmetric Cyanation Reactions
    I. Fujimori, T. Mita, K. Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shibasaki, Tetrahedron, 2007, 63, 5820-5831
    DOI: 10.1016/j.tet.2007.02.081
  • Second Generation Catalytic Asymmetric Synthesis of Tamiflu: Allylic Substitution Route
    T. Mita, N. Fukuda, F. X. Roca, M. Kanai, M. Shibasaki, Org. Lett., 2007, 9, 259-262
    DOI: 10.1021/ol062663c

2006

  • Key Role of the Lewis Base Position in Asymmetric Bifunctional Catalysis: Design and Evaluation of a New Ligand for Chiral Polymetallic Catalysts
    I. Fujimori, T. Mita, K. Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 16438-16439
    DOI: 10.1021/ja067003h
  • De Novo Synthesis of Tamiflu via a Catalytic Asymmetric Ring-Opening of meso-Aziridines with TMSN3
    Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 6312-6313
    DOI: 10.1021/ja061696k
  • Assembly State of Catalytic Modules as Chiral Switches in Asymmetric Strecker Amino Acid Synthesis
    N. Kato, T. Mita, M. Kanai, B. Therrien, M. Kawano, K. Yamaguchi, H. Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 6768-6769
    DOI: 10.1021/ja060841r

2005

  • Catalytic Enantioselective Reactions by the Chiral Cobalt Complexes as Lewis Acid Catalysts
    T. Kezuka, T. Mita, I. Iwakura, T. Ikeno, T. Yamada, Yuki Gosei Kagaku Kyokaishi, 2005, 63, 604-615
    DOI: 10.5059/yukigoseikyokaishi.63.604
  • Catalytic Enantioselective Desymmetrization of meso-N-Acylaziridines with TMSCN
    T. Mita, I. Fujimori, R. Wada, J. Wen, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 11252-11253
    DOI: 10.1021/ja053486y
  • Catalytic Enantioselective Conjugate Addition of Cyanide to α,β-Unsaturated N-Acylpyrroles
    T. Mita, K. Sasaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 514-515
    DOI: 10.1021/ja043424s

2003

  • Enantioselective 1,3-Dipolar Cycloaddition Reaction of Nitrones with α,β-Unsaturated Aldehydes Catalyzed by Cationic 3-Oxobutylideneaminatocobalt(III) Complexes
    S. Kezuka, N. Ohtsuki, T. Mita, Y. Kogami, T. Ashizawa, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2003, 76, 2197-2207
    DOI: 10.1246/bcsj.76.2197
  • Enantioselective 1,3-Dipolar Cycloaddition Reactions between Nitrones and α-Substituted α,β-Unsaturated Aldehydes Catalyzed by Chiral Cationic Cobalt(III) Complexes
    N. Ohtsuki, S. Kezuka, Y. Kogami, T. Mita, T. Ashizawa, T. Ikeno, T. Yamada, Synthesis, 2003, , 1462-1466
    DOI:

2002

  • Enantioselective 1,3-Dipolar Cycloaddition of Nitrones Catalyzed by Optically Active Cationic Cobalt(III) Complexes
    T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Org. Lett., 2002, 4, 2457-2460
    DOI: 10.1021/ol026079p

2001

  • Highly Active 3-Oxobutylideneaminatocobalt Complex Catalysts for an Enantioselective Hetero Diels-Alder Reaction
    S. Kezuka, T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2001, 74, 1333-1342
    DOI: 10.1246/bcsj.74.1333

2000

  • Optically Active Cationic Cobalt(III) Complexes: Highly Efficient Catalysts for Enantioselective Hetero Diels-Alder Reaction
    S. Kezuka, T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Chem. Lett., 2000, , 824-825
    DOI: 10.1246/cl.2000.824
  • Optically Active Aldiminato Cobalt(II) Complex Catalyst for Enantioselective Hetero-Diels-Alder Reaction
    T. Yamada, S. Kezuka, T. Mita, T. Ikeno, Heterocycles, 2000, 52, 1041-1045
    DOI: 10.3987/COM-99-S126