研究紹介
研究テーマ
有機合成化学(新反応開発、触媒設計)
キーワード
経歴
経歴(Curriculum Vitae)および論文リストを参照願います。
研究概要
我々の研究グループでは、量子化学計算(Gaussian, およびGRRM (AFIRを搭載))を基盤とした新しい分子変換反応の開発を通して、高付加価値化合物(例:フルオロアミノ酸)の化学合成を行っています。触媒反応のみならず様々な反応形式に対応するべく、幅広い有機化学の知識を有する研究者が集まっています。
イオン反応 高反応性のカルベン、ナイトレン、ベンザイン、カルボカチオンなどを基盤とした反応開発を行っています。加えて、豊富で安価、かつ低毒性な一炭素資源である二酸化炭素の固定化反応の開発にも取り組んでいます。
- Nat. Synth. 2022, 1 (10), 804-814. DOI: 10.1038/s44160-022-00128-y
- Chem. Eur. J. 2021, 27 (39), 10040-10047. DOI: 10.1002/chem.202100812
- Chem. Sci. 2020, 11 (29), 7569-7577. DOI: 10.1039/D0SC02089C
- Angew. Chem., Int. Ed. 2011, 50 (6), 1393-1396. DOI: 10.1002/anie.201006422
ラジカル反応 ラジカル種の新たな反応性を量子化学計算によって予測して新反応開発に繋げます。ラジカル種を発生させるための紫外光から赤色までの各種LED光源、各種光触媒、電解反応装置、加えて、ラジカルを制御するためのフローシステムの導入も行いました。現在エチレンのラジカル二官能基化反応に焦点を当てて研究を行っています。
光反応
- JACS Au 2024, 4, DOI: 10.1021/jacsau.4c00347
- Precis. Chem. 2024, 2 (3), 88-95. DOI: 10.1021/prechem.3c00117
- Angew. Chem., Int. Ed. 2023, 62 (23), e202303435. DOI: 10.1002/anie.202303435
- ACS Catal. 2023, 13 (4), 2482-2488. DOI: 10.1021/acscatal.2c06192
- Angew. Chem., Int. Ed. 2023, 62 (1), e202211936. DOI: 10.1002/anie.202211936
- Nat. Commun. 2022, 13, 7034. DOI: 10.1038/s41467-022-34546-5
- ACS Omega 2021, 6 (49), 33846-33854. DOI: 10.1021/acsomega.1c05102
電解反応
- Org. Lett. 2023, 25 (23), 4231-4235. DOI: 10.1021/acs.orglett.3c01033
- J. Am. Chem. Soc. 2022, 144 (8), 3685-3695. DOI: 10.1021/jacs.1c13032
ペリ環状反応 原子効率100%で計算化学の予測に最適な反応形式です。Woodward-Hoffmann則に沿った計算予測が可能なため、新しい反応形式、選択性を有する新反応が見つかる可能性があり、その開発に向けて研究を進めています。
- J. Am. Chem. Soc. 2022, 144 (50), 22985-23000. DOI: 10.1021/jacs.2c09830
遷移金属触媒反応 C-H結合やC-C結合など、遷移金属触媒を用いないと切断しにくい結合を官能基化するための新反応開発を行い、二酸化炭素の触媒的な固定化に繋げています。そのための触媒設計などにも力を入れています。また別途、鉄やイリジウムなどを内包する人工金属酵素を用いた新反応開発も行っています。
- Chem. Asian J. 2021, 16 (24), 4072-4080. DOI: 10.1002/asia.202100989
- Adv. Synth. Catal. 2020, 362 (6), 1275-1280. DOI: 10.1002/adsc.201901533
- J. Am. Chem. Soc. 2017, 139 (17), 6094-6097. DOI: 10.1021/jacs.7b02775
- Chem. Eur. J. 2015, 21 (46), 16391-16394. DOI: 10.1002/chem.201503359
我々が最近執筆した総説
- Chem. Sci. 2023, 14 (42), 11601-11616. DOI: 10.1039/D3SC03319H
- Asian J. Org. Chem. 2022, 11 (5), e202200082. DOI: 10.1002/ajoc.202200082
- Chem. Asian J. 2019, 14 (12), 2038-2047. DOI: 10.1002/asia.201900379
代表的な研究成果
- Krishnan, C. G.; Takano, H.; Katsuyama, H.; Kanna, W.; Hayashi, H.; Mita, T.* “Strain-Releasing Ring-Opening Diphosphinations for the Synthesis of Diphosphine Ligands with Cyclic Backbones” JACS Au 2024, 4,
DOI: 10.1021/jacsau.4c00347 - Mangaonkar, S. R.; Hayashi, H.; Kanna, W.; Debbarma, S.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “γ‑Butyrolactone Synthesis from Allylic Alcohols Using the CO2 Radical Anion” Precis. Chem. 2024, 2 (3), 88-95.
DOI: 10.1021/prechem.3c00117 - Rawat, V. K.; Hayashi, H.; Katsuyama, H.; Mangaonkar, S. R.; Mita, T.* “Revisiting the Electrochemical Carboxylation of Naphthalene with CO2: Selective Monocarboxylation of 2-Substituted Naphthalenes” Org. Lett. 2023, 25 (23), 4231-4235.
DOI: 10.1021/acs.orglett.3c01033 - Takano, H.; Katsuyama, H.; Hayashi, H.; Harukawa, M.; Tsurui, M.; Shoji, S.; Hasegawa, Y.; Maeda, S.; Mita, T.* “Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands” Angew. Chem., Int. Ed. 2023, 62 (23), e202303435.
DOI: 10.1002/anie.202303435 - Mangaonkar, S. R.; Hayashi, H.; Takano, H.; Kanna, W.; Maeda, S.; Mita, T.* “Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics” ACS Catal. 2023, 13 (4), 2482-2488.
DOI: 10.1021/acscatal.2c06192 - Harabuchi, Y.*; Hayashi, H.; Takano, H.; Mita, T.; Maeda, S.* “Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction” Angew. Chem., Int. Ed. 2023, 62 (1), e202211936.
DOI: 10.1002/anie.202211936 - Mita, T.*; Takano, H.; Hayashi, H.; Kanna, W.; Harabuchi, Y.; Houk, K. N.; Maeda, S.* “Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets” J. Am. Chem. Soc. 2022, 144 (50), 22985-23000.
DOI: 10.1021/jacs.2c09830 - Takano, H.; Katsuyama, H.; Hayashi, H.; Kanna, W.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “A Theory-driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene” Nat. Commun. 2022, 13, 7034.
DOI: 10.1038/s41467-022-34546-5. - Hayashi, H.; Katsuyama, H.; Takano, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “In Silico Reaction Screening with Difluorocarbene for N-Difluoroalkylative Dearomatization of Pyridines” Nat. Synth. 2022, 1 (10), 804-814.
DOI: 10.1038/s44160-022-00128-y - You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.*; Mita, T.* “Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials” J. Am. Chem. Soc. 2022, 144 (8), 3685-3695.
DOI: 10.1021/jacs.1c13032 - Takano, H.; You, Y.; Hayashi, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene” ACS Omega 2021, 6 (49), 33846-33854.
DOI: 10.1021/acsomega.1c05102 - Kanna, W.; Harabuchi, Y.; Takano, H.; Hayashi, H.; Maeda, S.*; Mita, T.* “Carboxylation of a Palladacycle Formed via C(sp3)-H Activation: Theory-Driven Reaction Design” Chem. Asian J. 2021, 16 (24), 4072-4080.
DOI: 10.1002/asia.202100989 - 美多 剛, 前田 理, 髙野 秀明
“化合物の新規製造方法、新規化合物および金属触媒”
特願2021-131481, 2021年8月11日出願.
PCT/JP2022/ 30598, 2022年8月10日PCT出願. - Hayashi, H.; Takano, H.; Katsuyama, H.; Harabuchi, Y.; Maeda, S.*; Mita, T.* “Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Application” Chem. Eur. J. 2021, 27 (39), 10040-10047.
DOI: 10.1002/chem.202100812 - Mita, T.*; Harabuchi, Y.; Maeda, S.* “Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations” Chem. Sci. 2020, 11 (29), 7569-7577.
DOI: 10.1039/D0SC02089C - Mita, T.*; Uchiyama, M.; Sato, Y.* “Catalytic Intramolecular Coupling of Ketoalkenes by Allylic C(sp3)-H Bond Cleavage: Synthesis of Five- and Six-Membered Carbocyclic Compounds” Adv. Synth. Catal. 2020, 362 (6), 1275-1280.
DOI: 10.1002/adsc.201901533 - Mita, T.*; Ishii, S.; Higuchi, Y.; Sato, Y.* “Pd-Catalyzed Dearomative Carboxylation of Indolylmethanol Derivatives” Org. Lett. 2018, 20 (23), 7603-7606.
DOI: 10.1021/acs.orglett.8b03337 - Michigami, K.; Mita, T.*; Sato, Y.* “Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2” J. Am. Chem. Soc. 2017, 139 (17), 6094-6097.
DOI: 10.1021/jacs.7b02775 - Mita, T.*; Sugawara, M.; Sato, Y.* “One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration” J. Org. Chem. 2016, 81 (12), 5236-5243.
DOI: 10.1021/acs.joc.6b00837 - Mita, T.*; Higuchi, Y.; Sato, Y.* “Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2” Chem. Eur. J. 2015, 21 (46), 16391-16394.
DOI: 10.1002/chem.201503359 - Mita, T.*; Sugawara, M.; Saito, K.; Sato, Y.* “Catalytic Enantioselective Silylation of N-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO2 via Stereospecific Carboxylation of α-Amino Silanes” Org. Lett. 2014, 16 (11), 3028-3031.
DOI: 10.1021/ol501143c - Mita, T.*; Ikeda, Y.; Michigami, K.; Sato, Y.* “Iridium-Catalyzed Triple C(sp3)-H Borylations: Construction of Triborylated Sp3-Carbon Centers” Chem. Commun. 2013, 49 (49), 5601-5603.
DOI: 10.1039/C3CC42675K - Mita, T.*; Chen, J.; Sugawara, M.; Sato, Y.* “One-Pot Synthesis of α-Amino Acids from Imines through CO2Incorporation: An Alternative Method for Strecker Synthesis” Angew. Chem. Int. Ed. 2011, 50 (6), 1393-1396.
DOI: 10.1002/anie.201006422
関連する研究記事
- 歪んだ小分子からジホスフィン配位子を化学合成する新手法を開発
- アリルアルコールとギ酸塩から光照射下、γ-ラクトンを合成する手法を開発
- 計算主導による新反応開発の実例をまとめた論文が発表されました。
- プレスリリース 直線状リン配位子の合成に成功 〜歪んだプロペラン分子に光を照射して直線分子の合成に成功〜
- プレスリリース 二つの触媒の協働作用により光エネルギーから医薬品骨格を構築 〜安価なギ酸誘導体と安定な芳香環を光照射下反応させてα-アミノ酸の合成に成功〜
- プレスリリース 量子化学計算で、有機化合物の出発原料をゼロから予測 ~網羅的な逆合成解析により高収率な化学反応を予測~
- プレスリリース光電子移動触媒反応の触媒サイクル全貌を解明 ~交差シームの系統的探索を用いて反応メカニズムを計算~
- プレスリリース 医薬品合成等に使用される金属触媒の配位子合成に成功 ~量子化学計算により出発原料を特定し反応経路を予測~
- プレスリリース インシリコスクリーニングを駆使した化学反応の新しい開発戦略〜新規3成分反応によるフッ素化含窒素複素環骨格の合成に成功〜
- プレスリリース インドールなどの化学的に安定なヘテロ芳香環に 二酸化炭素を二分子導入する新手法を開発
- 計算科学主導によるエチレンガスのダブル官能基化反応
- パラダサイクルのカルボキシル化:量子化学計算と合成化学実験による新手法開発
- 計算科学により設計された、アミン、ジフルオロカルベン、二酸化炭素からのジフルオログリシン誘導体の合成
- コンピュータが先導するα-アミノ酸の化学合成 ~新反応開発の新しい戦略,開発時間の大幅短縮へ貢献~
業績一覧
2024年
-
Strain-Releasing Ring-Opening Diphosphinations for the Synthesis of Diphosphine Ligands with Cyclic Backbones
, H. Takano, H. Katsuyama, W. Kanna, H. Hayashi, T. Mita, Jacs Au, 2024, ,
DOI: 10.1021/jacsau.4c00347
-
Trans-Selective Carboxylative Cyclization of 1,6-Dienes Using the CO2 Radical Anion
, H. Hayashi, S. Mangaonkar, T. Mita, Chem. Lett., 2024, 53,
DOI: 10.1093/chemle/upae149
2023年
-
Quantum Chemical Calculations for Reaction Prediction in the Development of Synthetic Methodologies
, S. Maeda, T. Mita, Chem. Sci., 2023, 14, 11601-11616
DOI: 10.1039/d3sc03319H
-
Frontispiece: Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, 62,
DOI: 10.1002/anie.202382362
-
Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method
, Y. Harabuchi, H. Hayashi, T. Mita, Annual Review of Physical Chemistry, 2023, 74, 287-311
DOI: 10.1146/annurev-physchem-102822-101025
-
Synthesis of Bicyclo [1.1.1] Pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, ,
DOI: 10.1002/anie.202303435
-
Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics
, H. Hayashi, H. Takano, W. Kanna, S. Maeda, T. Mita, Acs Catalysis, 2023, 13, 4, 2482-2488
DOI: 10.1021/acscatal.2c06192
2022年
-
Catalytic Carbonyl Allylation Using Terminal Alkenes as Nucleophiles
, Mita, T., Sato, Y., J. Syn. Org. Chem. Jpn., 2022, 80 (3), 210-221
DOI: 10.5059/yukigoseikyokaishi.80.210
-
Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets
, H. Takano, H. Hayashi, W. Kanna, Y. Harabuchi, K. N. Houk, S. Maeda, J. Am. Chem. Soc., 2022, 144, 50, 22985–23000
DOI: 10.1021/jacs.2c09830
-
Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction
, H. Hayashi, H. Takano, T. Mita, S. Maeda, Angew. Chem., Int. Ed., 2022, ,
DOI: 10.1002/anie.202211936
-
A Theory-Driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene
, H. Katsuyama, H. Hayashi, W. Kanna, Y. Harabuchi, S. Maeda, T. Mita, Nat. Commun., 2022, 13, Article number: 7034 (2022)
DOI: 10.1038/s41467-022-34546-5
-
Catalytic Umpolung Carboxylation of Pi-AllylPalladium Species with Carbon Dioxide
, Y. Higuchi, Y. Sato, J. Syn. Org. Chem. Jpn., 2022, 80, 806-816
DOI: 10.5059/yukigoseikyokaishi.80.806
-
Recent Advances in the Catalytic Umpolung Carboxylation of Allylic Alcohol Derivatives with Carbon Dioxide
, T. Mita, Asian Journal of Organic Chemistry, 2022, 11, e202200082
DOI: 10.1002/ajoc.202200082
-
Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials
, W. Kanna, H. Takano, H. Hayashi, S. Maeda, T. Mita, J. Am. Chem. Soc., 2022, 144, 3685-3695
DOI: 10.1021/jacs.1c13032
2021年
-
Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene
, Y. You, H. Hayashi, Y. Harabuchi, S. Maeda, T. Mita, Acs Omega, 2021, 6, 33846-33854
DOI: 10.1021/acsomega.1c05102
-
Carboxylation of a Palladacycle Formed via C(sp(3))-H Activation: Theory-Driven Reaction Design
, Y. Harabuchi, H. Takano, H. Hayashi, S. Maeda, T. Mita, Chem. Asian J., 2021, 16, 4072-4080
DOI: 10.1002/asia.202100989
-
Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Applications
, H. Takano, H. Katsuyama, Y. Harabuchi, S. Maeda, T. Mita, Chem. Eur. J., 2021, 27, 10040-10047
DOI: 10.1002/chem.202100812
-
Chemoselective Cleavage of Si-C(sp(3)) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)
, N. Komami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. Matsunaga, J. Am. Chem. Soc., 2021, 143, 103-108
DOI: 10.1021/jacs.0c11645
2020年
-
Catalytic Intramolecular Coupling of Ketoalkenes by Allylic C(sp3)-H Bond Cleavage: Synthesis of Five- and Six-Membered Carbocyclic Compounds
, M. Uchiyama, Y. Sato, Adv. Synth. Catal., 2020, 362, 1275-1280
DOI: 10.1002/adsc.201901533
-
Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations
, Y. Harabuchi, S. Maeda, Chem. Sci., 2020, 11, 7569-7577
DOI: 10.1039/d0sc02089c
-
General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis
, M. Uesugi, R. Takahashi, T. Mita, T. Ishiyama, K. Kubota, H. Ito, J. Am. Chem. Soc., 2020, 142, 14125-14133
DOI: 10.1021/jacs.0c03011
2019年
-
Catalytic Carboxylation of Heteroaromatic Compounds: Double and Single Carboxylation with CO2
, H. Masutani, S. Ishii, Y. Sato, Synlett, 2019, 30, 841-844
DOI: 10.1055/s-0037-1612414
-
Syntheses of α-Amino Acids by Using CO2 as a C1 Source
, Y. Sato, Chem. Asian J., 2019, 14, 2038-2047
DOI: 10.1002/asia.201900379
2018年
-
Pd-Catalyzed Dearomative Carboxylation of Indolylmethanol Derivatives
, S. Ishii, Y. Higuchi, Y. Sato, Org. Lett., 2018, 20, 7603-7606
DOI: 10.1021/acs.orglett.8b03337
-
Cobalt-Catalyzed Nucleophilic Addition of the Allylic C(sp3)-H Bond of Simple Alkenes to Ketones
, M. Uchiyama, K. Michigami, Y. Sato, Beilstein J. Org. Chem., 2018, 14, 2012-2017
DOI: 10.3762/bjoc.14.176
2017年
-
Palladium-Catalyzed Intramolecular Arylative Carboxylation of Allenes with CO2 for the Construction of 3-Substituted Indole-2-Carboxylic Acids
, T. Mita, Y. Sato, Org. Lett., 2017, 19, 2710-2713
DOI: 10.1021/acs.orglett.7b01055
-
Cobalt-Catalyzed Allylic C(sp3)-H Carboxylation with CO2
, T. Mita, Y. Sato, J. Am. Chem. Soc., 2017, 139, 6094-6097
DOI: 10.1021/jacs.7b02775
-
Cobalt-Catalyzed Direct Addition of Allylic C(sp3)-H Bonds to Ketones
, S. Hanagata, K. Michigami, Y. Sato, Org. Lett., 2017, 19, 5876-5879
DOI: 10.1021/acs.orglett.7b02871
2016年
-
Stereoretentive Addition of N-Tert-Butylsulfonyl-α-Amido Silanes to Aldehydes, Ketones, α,β-Unsaturated Esters, and Imines
, K. Saito, M. Sugawara, Y. Sato, Chem. Asian J., 2016, 11, 1528-1531
DOI: 10.1002/asia.201600270
-
One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration
, M. Sugawara, Y. Sato, J. Org. Chem., 2016, 81, 5236-5243
DOI: 10.1021/acs.joc.6b00837
-
Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2
, H. Tanaka, Y. Higuchi, Y. Sato, Org. Lett., 2016, 18, 2754-2757
DOI: 10.1021/acs.orglett.6b01231
2015年
-
Development of Catalytic C(sp3)-H Silylation and Triborylation Followed by Carboxylation with CO2
, Yuki Gosei Kagaku Kyokaishi, 2015, 73, 810-820
DOI: 10.5059/yukigoseikyokaishi.73.810
-
Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2
, Y. Higuchi, Y. Sato, Chem. Eur. J., 2015, 21, 16391-16394
DOI: 10.1002/chem.201503359
-
A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions
, K. Suga, K. Sato, Y. Sato, Org. Lett., 2015, 17, 5276-5279
DOI: 10.1021/acs.orglett.5b02645
2014年
-
Synthesis of Arylglycines from CO2 through α-Amino Organomanganese Species
, J. Chen, Y. Sato, Org. Lett., 2014, 16, 2200-2203
DOI: 10.1021/ol500701n
-
Carboxylation with CO2 via Brook Rearrangement: Preparation of α-Hydroxy Acid Derivatives
, Y. Higuchi, Y. Sato, Org. Lett., 2014, 16, 14-17
DOI: 10.1021/ol403099f
-
Catalytic Enantioselective Silylation of N-Sulfonylimines: Asymmetric Synthesis of α-Amino Acids from CO2 via Stereospecific Carboxylation of α-Amino Silanes
, M. Sugawara, K. Saito, Y. Sato, Org. Lett., 2014, 16, 3028-3031
DOI: 10.1021/ol501143c
-
Ruthenium-Catalyzed C-H Silylation of 1-Arylpyrazole Derivatives and Fluoride-Mediated Carboxylation: Use of Two Nitrogen Atoms of the Pyrazole Group
, H. Tanaka, K. Michigami, Y. Sato, Synlett, 2014, 25, 1291-1294, 4 pp.
DOI: 10.1055/s-0033-1341230
2013年
-
One-Step Synthesis of Racemic α-Amino Acids from Aldehydes, Amine Components, and Gaseous CO2 by the Aid of a Bismetal Reagent
, Y. Higuchi, Y. Sato, Chem. Eur. J., 2013, 19, 1123-1128
DOI: 10.1002/chem.201202332
-
Iridium-Catalyzed Triple C(sp3)-H Borylations: Construction of Triborylated sp3-Carbon Centers
, Y. Ikeda, K. Michigami, Y. Sato, Chem. Commun., 2013, 49, 5601-5603
DOI: 10.1039/c3cc42675k
-
Iridium- and Rhodium-Catalyzed Dehydrogenative Silylations of C(sp3)-H Bonds Adjacent to a Nitrogen Atom Using Hydrosilanes
, K. Michigami, Y. Sato, Chem. Asian J., 2013, 8, 2970-2973
DOI: 10.1002/asia.201300930
-
One-Pot Synthesis of α-Amino Acids from CO2 Using Bismetal Reagents
, Y. Sato, Yuki Gosei Kagaku Kyokaishi, 2013, 71, 1163-1171
DOI: 10.5059/yukigoseikyokaishi.71.1163
2012年
-
One-Pot Synthesis of α-Amino Acids from CO2 Using a Bismetal Reagent with Si-B Bond
, J. Chen, M. Sugawara, Y. Sato, Org. Lett., 2012, 14, 6202-6205
DOI: 10.1021/ol302952r
-
Convenient and Practical Synthesis of α-Amido Stannanes
, Y. Higuchi, Y. Sato, Synthesis, 2012, 44, 194-200
DOI: 10.1055/s-0031-1289597
-
Sequential Protocol for C(sp3)-H Carboxylation with CO2: Transition-Metal-Catalyzed Benzylic C-H Silylation and Fluoride-Mediated Carboxylation
, K. Michigami, Y. Sato, Org. Lett., 2012, 14, 3462-3465
DOI: 10.1021/ol301431d
-
Synthesis of Arylglycine and Mandelic Acid Derivatives through Carboxylations of α-Amido and α-Acetoxy Stannanes with Carbon Dioxide
, M. Sugawara, H. Hasegawa, Y. Sato, J. Org. Chem., 2012, 77, 2159-2168
DOI: 10.1021/jo202597p
2011年
-
One-Pot Synthesis of α-Amino Acids from Imines through CO2 Incorporation: An Alternative Method for Strecker Synthesis
, J. Chen, M. Sugawara, Y. Sato, Angew. Chem., Int. Ed., 2011, 50, 1393-1396
DOI: 10.1002/anie.201006422
-
Practical Synthesis of N-Boc- and N-Cbz-α-Amido Stannanes from α-Amido Sulfones Using TMSSnBu3 and CsF
, Y. Higuchi, Y. Sato, Org. Lett., 2011, 13, 2354-2357
DOI: 10.1021/ol200599d
2009年
-
Bifunctional Asymmetric Catalysis with Hydrogen Chloride: Enantioselective Ring Opening of Aziridines Catalyzed by a Phosphinothiourea
, E. N. Jacobsen, Synlett, 2009, , 1680-1684
DOI: 10.1055/s-0029-1217344
2007年
-
Toward a Rational Design of the Assembly Structure of Polymetallic Asymmetric Catalysts: Design, Synthesis, and Evaluation of New Chiral Ligands for Catalytic Asymmetric Cyanation Reactions
, T. Mita, K. Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shibasaki, Tetrahedron, 2007, 63, 5820-5831
DOI: 10.1016/j.tet.2007.02.081
-
Second Generation Catalytic Asymmetric Synthesis of Tamiflu: Allylic Substitution Route
, N. Fukuda, F. X. Roca, M. Kanai, M. Shibasaki, Org. Lett., 2007, 9, 259-262
DOI: 10.1021/ol062663c
2006年
-
Key Role of the Lewis Base Position in Asymmetric Bifunctional Catalysis: Design and Evaluation of a New Ligand for Chiral Polymetallic Catalysts
, T. Mita, K. Maki, M. Shiro, A. Sato, S. Furusho, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 16438-16439
DOI: 10.1021/ja067003h
-
De Novo Synthesis of Tamiflu via a Catalytic Asymmetric Ring-Opening of meso-Aziridines with TMSN3
, T. Mita, N. Fukuda, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 6312-6313
DOI: 10.1021/ja061696k
-
Assembly State of Catalytic Modules as Chiral Switches in Asymmetric Strecker Amino Acid Synthesis
, T. Mita, M. Kanai, B. Therrien, M. Kawano, K. Yamaguchi, H. Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am. Chem. Soc., 2006, 128, 6768-6769
DOI: 10.1021/ja060841r
2005年
-
Catalytic Enantioselective Reactions by the Chiral Cobalt Complexes as Lewis Acid Catalysts
, T. Mita, I. Iwakura, T. Ikeno, T. Yamada, Yuki Gosei Kagaku Kyokaishi, 2005, 63, 604-615
DOI: 10.5059/yukigoseikyokaishi.63.604
-
Catalytic Enantioselective Desymmetrization of meso-N-Acylaziridines with TMSCN
, I. Fujimori, R. Wada, J. Wen, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 11252-11253
DOI: 10.1021/ja053486y
-
Catalytic Enantioselective Conjugate Addition of Cyanide to α,β-Unsaturated N-Acylpyrroles
, K. Sasaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 514-515
DOI: 10.1021/ja043424s
2003年
-
Enantioselective 1,3-Dipolar Cycloaddition Reaction of Nitrones with α,β-Unsaturated Aldehydes Catalyzed by Cationic 3-Oxobutylideneaminatocobalt(III) Complexes
, N. Ohtsuki, T. Mita, Y. Kogami, T. Ashizawa, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2003, 76, 2197-2207
DOI: 10.1246/bcsj.76.2197
2002年
-
Enantioselective 1,3-Dipolar Cycloaddition of Nitrones Catalyzed by Optically Active Cationic Cobalt(III) Complexes
, N. Ohtsuki, T. Ikeno, T. Yamada, Org. Lett., 2002, 4, 2457-2460
DOI: 10.1021/ol026079p
2001年
-
Highly Active 3-Oxobutylideneaminatocobalt Complex Catalysts for an Enantioselective Hetero Diels-Alder Reaction
, T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2001, 74, 1333-1342
DOI: 10.1246/bcsj.74.1333
2000年
-
Optically Active Cationic Cobalt(III) Complexes: Highly Efficient Catalysts for Enantioselective Hetero Diels-Alder Reaction
, T. Mita, N. Ohtsuki, T. Ikeno, T. Yamada, Chem. Lett., 2000, , 824-825
DOI: 10.1246/cl.2000.824
-
Optically Active Aldiminato Cobalt(II) Complex Catalyst for Enantioselective Hetero-Diels-Alder Reaction
, S. Kezuka, T. Mita, T. Ikeno, Heterocycles, 2000, 52, 1041-1045
DOI: 10.3987/COM-99-S126