MAEDA, Satoshi

thumbnail image
MAEDA, Satoshi
Principal Investigator, Director, Professor
Hokkaido University
Research Areas
Theoretical Chemistry
Related Website
Contact

smaeda atmark eis.hokudai.ac.jp

MAEDA, Satoshi Group
Principal Investigator
  • thumbnail image
    MAEDA, Satoshi
Faculty Members
Postdoctoral Fellows
Research Collaborators
Staff

About the Research

Research Theme

Mapping the reaction paths with the Artificial Force Induced Reaction (AFIR) method

Keyword

Theoretical Chemistry, Artificial Force Induced Reaction Method

Research Outline

My research topic is to develop a method which explores unknown chemical reaction pathways by using quantum-chemical first-principle calculations and computers. My main calculation method is called ‘Artificial Force-Induced Reaction’ (AFIR), which operates on the principle of including in the calculations an artificial gradient that tries to push reactants together to indicate the position of transition structures on the potential energy surface. Thus we can predict all types of reactions including rearrangements of covalent bonds, hydrogen bonds, coordination bonds, metal-metal bonds, weak bonds of van der Waals interactions, and so on, and can also find pathways of conformational rearrangements, pseudo rotations in organometallic complexes, and those for non-adiabatic transitions between different electronic states.

By repeating this procedure many times, the method can find the whole reaction path network, which tells us the reaction mechanism and uncovers unknown chemical reactions.

In order to effectively find new chemical reactions, we need ideas and verification from experimental chemists. On the other hand, our AFIR method creates a large amount of data, the handling of which already is a serious problem. Therefore, by working together with experimental chemists and information scientists at ICReDD, we will be able to develop a truly useful method for the prediction of chemical reactions.

The Researcher’s Perspective

After high school and way into my university studies, my plan was to become a public servant. However, in my first year as a master student, I remembered a book on computational chemistry I had read with my supervisor, and decided I wanted to give the then-unsolved problem of finding reaction pathways a try. This is when I took the initial steps in what would eventually evolve into AFIR. I enjoyed this work very much, I simply couldn’t quit, and so I decided to become a scientist.

For details on MANABIYA course topics, please follow this link. To learn more about MANABIYA in general, please click here.

Representative Research Achievements

  • Systematic Exploration of the Mechanism of Chemical Reactions: the Global Reaction Route Mapping (GRRM) Strategy using the ADDF and AFIR Methods
    S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys., 2013, 15, 3683-3701
    DOI : 10.1039/C3CP44063J
  • Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms
    S. Maeda, K. Morokuma, J. Chem. Theory Comput., 2011, 7, 2335-2345
    DOI : 10.1021/ct200290m
  • Finding Reaction Pathways for Multicomponent Reactions: The Passerini Reaction is a Four-component Reaction
    S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, Angew. Chem. Int. Ed., 2011, 50, 644-649
    DOI : 10.1002/anie.201005336
  • No Straight Path: Roaming in both Ground- and Excited-state Photolytic Channels of NO3 → NO+O2
    M. P. Grubb, M. L. Warter, H.-Y. Xiao, S. Maeda, K. Morokuma, S. W. North, Science, 2012, 335, 1075-1078
    DOI : 10.1126/science.1216911
  • Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search
    S. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, K. Morokuma, Int. J. Quant. Chem., 2015, 115, 258-269
    DOI : 10.1002/qua.24757

Related Research

Publications

2024

  • Photoinduced Dual Bond Rotation of a Nitrogen-Containing System Realized by Chalcogen Substitution
    S. Nagami, R. Kaguchi, T. Akahane, Y. Harabuchi, T. Taniguchi, K. Monde, S. Maeda, S. Ichikawa, A. Katsuyama, Nature Chemistry, 2024, ,
    DOI: 10.1038/s41557-024-01461-9
  • On Accelerating Substrate Optimization Using Computational Gibbs Energy Barriers: A Numerical Consideration Utilizing a Computational Data Set
    H. Okada, S. Maeda, Acs Omega, 2024, 9, 7123-7131
    DOI: 10.1021/acsomega.3c09066
  • Ring Expansion of Cyclic Boronates via Oxyboration of Arynes
    Y. Shiratori, J. L. Jiang, K. Kubota, S. Maeda, H. Ito, J. Am. Chem. Soc., 2024, 146, 3, 1765-1770
    DOI: 10.1021/jacs.3c11851

2023

  • Using Mechanochemistry to Activate Commodity Plastics as Initiators for Radical Chain Reactions of Small Organic Molecules
    K. Kubota, J. L. Jiang, Y. Kamakura, R. Hisazumi, T. Endo, D. Miura, S. Kubo, S. Maeda, H. Ito, J. Am. Chem. Soc., 2023, 146, 1062-1070
    DOI: 10.1021/jacs.3c12049
  • Azobenzene as a Photoswitchable Mechanophore
    Y. R. Li, B. Xue, J. H. Yang, J. L. Jiang, J. Liu, Y. Y. Zhou, J. S. Zhang, M. J. Wu, Y. Yuan, Z. S. Zhu, Z. J. Wang, Y. L. Chen, Y. Harabuchi, T. Nakajima, W. Wang, S. Maeda, J. P. Gong, Y. Cao, Nature Chemistry, 2023, ,
    DOI: 10.1038/s41557-023-01389-6
  • An Energy Decomposition and Extrapolation Scheme for Evaluating Electron Transfer Rate Constants: A Case Study on Electron Self-Exchange Reactions of Transition Metal Complexes
    A. Mutsuji, K. Saita, S. Maeda, RSC Advances, 2023, 13, 32097-32103
    DOI: 10.1039/d3ra05784d
  • Quantum Chemical Calculations for Reaction Prediction in the Development of Synthetic Methodologies
    H. Hayashi, S. Maeda, T. Mita, Chem. Sci., 2023, 14, 11601-11616
    DOI: 10.1039/d3sc03319H
  • Stereospecific Synthesis of Silicon-Stereogenic Optically Active Silylboranes and General Synthesis of Chiral Silyl Anions
    X. H. Wang, C. Feng, J. L. Jiang, S. Maeda, K. Kubota, H. Ito, Nat. Commun., 2023, 14, 5561
    DOI: 10.1038/s41467-023-41113-z
  • A Combined Reaction Path Search and Hybrid Solvation Method for the Systematic Exploration of Elementary Reactions at the Solid-Liquid Interface
    T. Hasegawa, S. Hagiwara, M. Otani, S. Maeda, Journal of Physical Chemistry Letters, 2023, 14, 39, 8796-8804
    DOI: 10.1021/acs.jpclett.3c02233
  • Searching Chemical Action and Network (SCAN): An Interactive Chemical Reaction Path Network Platform
    Kuwahara, M., Harabuchi, Y., Maeda, S., Fujima, J., Takahashi, K., Digital Discovery, 2023, 2, 1104-1111
    DOI: 10.1039/d3dd00026e
  • Systematic Search for Thermal Decomposition Pathways of Formic Acid on Anatase TiO2 (101) Surface
    H. Nabata, S. Maeda, Chemcatchem, 2023, ,
    DOI: 10.1002/cctc.202300752
  • Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case
    R. Staub, P. Gantzer, Y. Harabuchi, S. Maeda, A. Varnek, Molecules, 2023, 28 (11), 4477
    DOI: 10.3390/molecules28114477
  • Frontispiece: Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
    H. Takano, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, 62,
    DOI: 10.1002/anie.202382362
  • Toward Ab Initio Reaction Discovery Using the Artificial Force Induced Reaction Method
    S. Maeda, Y. Harabuchi, H. Hayashi, T. Mita, Annual Review of Physical Chemistry, 2023, 74, 287-311
    DOI: 10.1146/annurev-physchem-102822-101025
  • Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design
    W. Matsuoka, Y. Harabuchi, S. Maeda, Acs Catalysis, 2023, 13, 8, 5697–5711
    DOI: 10.1021/acscatal.3c00576
  • Synthesis of Bicyclo [1.1.1] Pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
    H. Takano, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita, Angew. Chem., Int. Ed., 2023, ,
    DOI: 10.1002/anie.202303435
  • An Electron-Deficient CpE Iridium(III) Catalyst: Synthesis, Characterization, and Application to Ether-Directed C―H Amidation
    E. Tomita, M. Kojima, Y. Nagashima, K. Tanaka, H. Sugiyama, Y. Segawa, A. Furukawa, K. Maenaka, S. Maeda, T. Yoshino, S. Matsunaga, Angew. Chem., Int. Ed., 2023, 62, 21,
    DOI: 10.1002/anie.202301259
  • In Situ and Real-Time Visualization of Mechanochemical Damage in Double-Network Hydrogels by Prefluorescent Probe via Oxygen- Relayed Radical Trapping
    Y. Zheng, J. L. Jiang, M. Jin, D. Miura, F. X. Lu, K. Kubota, T. Nakajima, S. Maeda, H. Ito, J. P. Gong, J. Am. Chem. Soc., 2023, 145, 7376-7389
    DOI: 10.1021/jacs.2c13764
  • Highly Chemoselective Ligands for Suzuki-Miyaura Cross-Coupling Reaction Based on Virtual Ligand-Assisted Screening
    W. Matsuoka, Y. Harabuchi, Y. Nagata, S. Maeda, Org. Biomol. Chem., 2023, 21, 3132-3142
    DOI: 10.1039/d3ob00398a
  • Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO2 Radical Anion to (Hetero)Aromatics
    S. R. Mangaonkar, H. Hayashi, H. Takano, W. Kanna, S. Maeda, T. Mita, Acs Catalysis, 2023, 13, 4, 2482-2488
    DOI: 10.1021/acscatal.2c06192
  • Exploring the Quantum Chemical Energy Landscape with GNN- Guided Artificial Force
    A. Nakao, Y. Harabuchi, S. Maeda, K. Tsuda, J. Chem. Theory Comput., 2023, 19, 3, 713–717
    DOI: 10.1021/acs.jctc.2c01061
  • Early-Stage Formation of the SIFSIX-3-Zn Metal-Organic Framework: An Automated Computational Study
    B. B. Skjelstad, Y. Hijikata, S. Maeda, Inorg. Chem., 2023, 62, 3, 1210–1217
    DOI: 10.1021/acs.inorgchem.2c03681

2022

  • Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets
    T. Mita, H. Takano, H. Hayashi, W. Kanna, Y. Harabuchi, K. N. Houk, S. Maeda, J. Am. Chem. Soc., 2022, 144, 50, 22985–23000
    DOI: 10.1021/jacs.2c09830
  • Oxidation and Reduction Pathways in the Knowles Hydroamination via a Photoredox-Catalyzed Radical Reaction
    Y. Harabuchi, H. Hayashi, H. Takano, T. Mita, S. Maeda, Angew. Chem., Int. Ed., 2022, ,
    DOI: 10.1002/anie.202211936
  • A Theory-Driven Synthesis of Symmetric and Unsymmetric 1,2-Bis(diphenylphosphino)ethane Analogues via Radical Difunctionalization of Ethylene
    H. Takano, H. Katsuyama, H. Hayashi, W. Kanna, Y. Harabuchi, S. Maeda, T. Mita, Nat. Commun., 2022, 13, Article number: 7034 (2022)
    DOI: 10.1038/s41467-022-34546-5
  • Oxyl Character and Methane Hydroxylation Mechanism in Heterometallic M(O)Co3O4 Cubanes (M = Cr, Mn, Fe, Mo, Tc, Ru, and Rh)
    B. B. Skjelstad, T. Helgaker, S. Maeda, D. Balcells, Acs Catalysis, 2022, 12, 19, 12326-12335
    DOI: 10.1021/acscatal.2c03748
  • Delayed Fluorescence from Inverted Singlet and Triplet Excited States
    N. Aizawa, Y. J. Pu, Y. Harabuchi, A. Nihonyanagi, R. Ibuka, H. Inuzuka, B. Dhara, Y. Koyama, K. I. Nakayama, S. Maeda, F. Araoka, D. Miyajima, Nature, 2022, 609, 502–506
    DOI: 10.1038/s41586-022-05132-y
  • Mechanochemically Generated Calcium-Based Heavy Grignard Reagents and Their Application to Carbon-Carbon Bond-Forming Reactions
    P. Gao, J. L. Jiang, S. Maeda, K. Kubota, H. Ito, Angew. Chem., Int. Ed., 2022, ,
    DOI: 10.1002/anie.202207118
  • Multistructural Microiteration Combined with QM/MM-ONIOM Electrostatic Embedding
    K. Suzuki, S. Maeda, Phys. Chem. Chem. Phys., 2022, 24, 16762-16773
    DOI: 10.1039/d2cp02270b
  • Enhancement of the Mechanical and Thermal Transport Properties of Carbon Nanotube Yarns by Boundary Structure Modulation
    R. Shikata, H. Suzuki, Y. Hayashi, T. Hasegawa, Y. Shigeeda, H. Inoue, W. Yajima, J. Kametaka, M. Maetani, Y. Tanaka, T. Nishikawa, S. Maeda, M. Hada, Nanotechnology, 2022, 33,
    DOI: 10.1088/1361-6528/ac57d5
  • Designing Transformer Oil Immersion Cooling Servers for Machine Learning and First Principle Calculations
    K. Takahashi, I. Miyazato, S. Maeda, L. Takahashi, Plos One, 2022, 17,
    DOI: 10.1371/journal.pone.0266880
  • Quantum Chemical Calculations to Trace Back Reaction Paths for the Prediction of Reactants
    Y. Sumiya, Y. Harabuchi, Y. Nagata, S. Maeda, Jacs Au, 2022, 2, 1181-1188
    DOI: 10.1021/jacsau.2c00157
  • Virtual Ligand-Assisted Screening Strategy to Discover EnablingLigands for Transition Metal Catalysis
    W. Matsuoka, Y. Harabuchi, S. Maeda, Acs Catalysis, 2022, 12, 3752-3766
    DOI: 10.1021/acscatal.2c00267
  • Leveraging Algorithmic Search in Quantum Chemical Reaction Path Finding
    A. Nakao, Y. Harabuchi, S. Maeda, K. Tsuda, Phys. Chem. Chem. Phys., 2022, 24, 10305-10310
    DOI: 10.1039/d2cp01079h
  • Kinetic Analysis of a Reaction Path Network Including Ambimodal Transition States: A Case Study of an Intramolecular Diels-Alder Reaction
    T. Ito, S. Maeda, Y. Harabuchi, J. Chem. Theory Comput., 2022, 18, 1663-1671
    DOI: 10.1021/acs.jctc.1c01297
  • Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials
    Y. You, W. Kanna, H. Takano, H. Hayashi, S. Maeda, T. Mita, J. Am. Chem. Soc., 2022, 144, 3685-3695
    DOI: 10.1021/jacs.1c13032
  • Azo-Crosslinked Double-Network Hydrogels Enabling Highly Efficient Mechanoradical Generation
    Z. J. Wang, J. L. Jiang, Q. F. Mu, S. Maeda, T. Nakajima, J. P. Gong, J. Am. Chem. Soc., 2022, 144, 3154-3161
    DOI: 10.1021/jacs.1c12539
  • Anthraquinodimethane Ring-Flip in Sterically Congested Alkenes: Isolation of Isomer and Elucidation of Intermediate through Experimental and Theoretical Approach
    Y. Ishigaki, T. Tadokoro, Y. Harabuchi, Y. Hayashi, S. Maeda, T. Suzuki, Bulletin of the Chemical Society of Japan, 2022, 95, 38-46
    DOI: 10.1246/bcsj.20210355
  • Selecting Molecules with Diverse Structures and Properties by Maximizing Submodular Functions of Descriptors Learned with Graph Neural Networks
    T. Nakamura, S. Sakaue, K. Fujii, Y. Harabuchi, S. Maeda, S. Iwata, Scientific Reports, 2022, 12,
    DOI: 10.1038/s41598-022-04967-9

2021

  • Radical Difunctionalization of Gaseous Ethylene Guided by Quantum Chemical Calculations: Selective Incorporation of Two Molecules of Ethylene
    H. Takano, Y. You, H. Hayashi, Y. Harabuchi, S. Maeda, T. Mita, Acs Omega, 2021, 6, 33846-33854
    DOI: 10.1021/acsomega.1c05102
  • Designing Two-Dimensional Dodecagonal Boron Nitride
    H. Suzuki, I. Miyazato, T. Hussain, F. Ersan, S. Maeda, K. Takahashi, Crystengcomm, 2021, 24, 471-474
    DOI: 10.1039/d1ce01354h
  • Mechanochemical Synthesis of Magnesium-Based Carbon Nucleophiles in Air and Their Use in Organic Synthesis
    R. Takahashi, A. Q. Hu, P. Gao, Y. P. Gao, Y. D. Pang, T. Seo, J. L. Jiang, S. Maeda, H. Takaya, K. Kubota, H. Ito, Nat. Commun., 2021, 12,
    DOI: 10.1038/s41467-021-26962-w
  • A Dataset of Computational Reaction Barriers for the Claisen Rearrangement: Chemical and Numerical Analysis
    H. Okada, S. Maeda, Molecular Informatics, 2021, 41,
    DOI: 10.1002/minf.202100216
  • Carboxylation of a Palladacycle Formed via C(sp(3))-H Activation: Theory-Driven Reaction Design
    W. Kanna, Y. Harabuchi, H. Takano, H. Hayashi, S. Maeda, T. Mita, Chem. Asian J., 2021, 16, 4072-4080
    DOI: 10.1002/asia.202100989
  • Pt(ii)-Chiral Diene-Catalyzed Enantioselective Formal 4+2 Cycloaddition Initiated by C-C Bond Cleavage and Elucidation of a Pt(ii)/(iv) Cycle by DFT Calculations
    T. Shibata, N. Shiozawa, S. Nishibe, H. Takano, S. Maeda, Organic Chemistry Frontiers, 2021, 8, 6985-6991
    DOI: 10.1039/d1qo01467f
  • A Reaction Route Network for Methanol Decomposition on a Pt(111) Surface
    K. Sugiyama, K. Saita, S. Maeda, Journal of Computational Chemistry, 2021, 42, 2163-2169
    DOI: 10.1002/jcc.26746
  • Mechanism of 2,6-Dichloro-4,4 '-Bipyridine-Catalyzed Diboration of Pyrazines Involving a Bipyridine-Stabilized Boryl Radical
    T. Ohmura, Y. Morimasa, T. Ichino, Y. Miyake, Y. Murata, M. Suginome, K. Tajima, T. Taketsugu, S. Maeda, Bulletin of the Chemical Society of Japan, 2021, 94, 1894-1902
    DOI: 10.1246/bcsj.20210145
  • Pincer-Type Phosphorus Compounds with Boryl-Pendant and Application in Catalytic H-2 Generation from Ammonia-Borane: A Theoretical Study
    D. S. Yang, P. Q. Bao, Z. Yang, Z. X. Chen, S. Sakaki, S. Maeda, G. X. Zeng, Chemcatchem, 2021, 13, 3925-3929
    DOI: 10.1002/cctc.202100661
  • Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO2: Computational Design, Scope, and Applications
    H. Hayashi, H. Takano, H. Katsuyama, Y. Harabuchi, S. Maeda, T. Mita, Chem. Eur. J., 2021, 27, 10040-10047
    DOI: 10.1002/chem.202100812
  • Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent
    K. Kubota, N. Toyoshima, D. Miura, J. L. Jiang, S. Maeda, M. Jin, H. Ito, Angew. Chem., Int. Ed., 2021, 60, 16003-16008
    DOI: 10.1002/anie.202105381
  • Mining Hydroformylation in Complex Reaction Network via Graph Theory
    K. Takahashi, M. Satoshi, RSC Advances, 2021, 11, 23235-23240
    DOI: 10.1039/d1ra03395f
  • Exploring Paths of Chemical Transformations in Molecular and Periodic Systems: An Approach Utilizing Force
    S. Maeda, Y. Harabuchi, Wiley Interdisciplinary Reviews-Computational Molecular Science, 2021, , 23
    DOI: 10.1002/wcms.1538
  • Targeted 1,3-Dipolar Cycloaddition with Acrolein for Cancer Prodrug Activation Dagger
    A. R. Pradipta, P. Ahmadi, K. Terashima, K. Muguruma, M. Fujii, T. Ichino, S. Maeda, K. Tanaka, Chem. Sci., 2021, 12, 5438-5449
    DOI: 10.1039/d0sc06083f
  • Observation of Borane-Olefin Proximity Interaction Governing the Structure and Reactivity of Boron-Containing Macrocycles
    Y. Murata, K. Matsunagi, J. Kashida, Y. Shoji, C. Ozen, S. Maeda, T. Fukushima, Angew. Chem., Int. Ed., 2021, ,
    DOI: 10.1002/anie.202103512
  • Combined Graph/Relational Database Management System for Calculated Chemical Reaction Pathway Data
    T. Gimadiev, R. Nugmanov, D. Batyrshin, T. Madzhidov, S. Maeda, P. Sidorov, A. Varnek, J. Chem. Inf. Model., 2021, 61, 554-559
    DOI: 10.1021/acs.jcim.0c01280
  • Silane- and Peroxide-Free Hydrogen Atom Transfer Hydrogenation Using Ascorbic Acid and Cobalt-Photoredox Dual Catalysis
    Y. Kamei, Y. Seino, Y. Yamaguchi, T. Yoshino, S. Maeda, M. Kojima, S. Matsunaga, Nat. Commun., 2021, 12, 9
    DOI: 10.1038/s41467-020-20872-z
  • Substitution Effect on the Nonradiative Decay and Trans -> Cis Photoisomerization Route: A Guideline to Develop Efficient Cinnamate-Based Sunscreens
    S. N. Kinoshita, Y. Harabuchi, Y. Inokuchi, S. Maeda, M. Ehara, K. Yamazaki, T. Ebata, Phys. Chem. Chem. Phys., 2021, 23, 13
    DOI: 10.1039/d0cp04402d
  • Chemoselective Cleavage of Si-C(sp(3)) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)
    K. Matsuoka, N. Komami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. Matsunaga, J. Am. Chem. Soc., 2021, 143, 103-108
    DOI: 10.1021/jacs.0c11645

2020

  • Artificial Force-Induced Reaction Method for Systematic Elucidation of Mechanism and Selectivity in Organometallic Reactions
    M. Hatanaka, T. Yoshimura, S. Maeda, New Directions in the Modeling of Organometallic Reactions, 2020, 67, 57-80
    DOI: 10.1007/3418_2020_51
  • Fluorescence Enhancement of Aromatic Macrocycles by Lowering Excited Singlet State Energies
    Ikemoto, K, Tokuhira, T, Uetani, A, Harabuchi, Y, Sato, S, Maeda, S, Isobe, H, J. Org. Chem., 2020, 85, 150-157
    DOI: 10.1021/acs.joc.9b02379
  • Phonon Transport Probed at Carbon Nanotube Yarn/sheet Boundaries by Ultrafast Structural Dynamics
    M. Hada, K. Makino, H. Inoue, T. Hasegawa, H. Masuda, H. Suzuki, K. Shirasu, T. Nakagawa, T. Seki, J. Matsuo, T. Nishikawa, Y. Yamashita, S. Koshihara, V. Stolojan, S. R. P. Silva, J. Fujita, Y. Hayashi, S. Maeda, M. Hase, Carbon, 2020, 170, 165-173
    DOI: 10.1016/j.carbon.2020.08.026
  • A Theoretical Study on the Alkali Metal Carboxylate-PromotedL-Lactidepolymerization
    C. Ozen, T. Satoh, S. Maeda, Journal of Computational Chemistry, 2020, 41, 2197-2202
    DOI: 10.1002/jcc.26386
  • Kinetic Prediction of Reverse Intersystem Crossing in Organic Donor-Acceptor Molecules
    N. Aizawa, Y. Harabuchi, S. Maeda, Y. J. Pu, Nat. Commun., 2020, 11, 6
    DOI: 10.1038/s41467-020-17777-2
  • Chiral Lanthanide Lumino-Glass for a Circularly Polarized Light Security Device
    Y. Kitagawa, S. Wada, M. D. J. Islam, K. Saita, M. Gon, K. Fushimi, K. Tanaka, S. Maeda, Y. Hasegawa, Communications Chemistry, 2020, 3, 5
    DOI: 10.1038/s42004-020-00366-1
  • Ineffective OH Pinning of the Flipping Dynamics of a Spherical Guest Within a Tight-Fitting Tube
    T. Matsuno, M. Someya, S. Sato, S. Maeda, H. Isobe, Angew. Chem., Int. Ed., 2020, 59, 14570-14576
    DOI: 10.1002/anie.202005538
  • Discovery of a Synthesis Method for a Difluoroglycine Derivative Based on a Path Generated by Quantum Chemical Calculations
    T. Mita, Y. Harabuchi, S. Maeda, Chem. Sci., 2020, 11, 7569-7577
    DOI: 10.1039/d0sc02089c
  • Palladium-Catalyzed C-H Iodination of Arenes by Means of Sulfinyl Directing Groups
    H. Saito, K. Yamamoto, Y. Sumiya, L. J. Liu, K. Nogi, S. Maeda, H. Yorimitsu, Chem. Asian J., 2020, 15, 2442-2446
    DOI: 10.1002/asia.202000591
  • AFIR Explorations of Transition States of Extended Unsaturated Systems: Automatic Location of Ambimodal Transition States
    T. Ito, Y. Harabuchi, S. Maeda, Phys. Chem. Chem. Phys., 2020, 22, 13942-13950
    DOI: 10.1039/d0cp02379e
  • Global Search for Crystal Structures of Carbon under High Pressure
    M. Takagi, S. Maeda, Acs Omega, 2020, 5, 18142-18147
    DOI: 10.1021/acsomega.0c01709
  • Computational Searches for Crystal Structures of Dioxides of Group 14 Elements (CO2, SiO2, GeO2) under Ultrahigh Pressure
    H. Nabata, M. Takagi, K. Saita, S. Maeda, RSC Advances, 2020, 10, 22156-22163
    DOI: 10.1039/d0ra03359f
  • Rate Constant Matrix Contraction Method for Systematic Analysis of Reaction Path Networks
    Y. Sumiya, S. Maeda, Chem. Lett., 2020, 49, 553-564
    DOI: 10.1246/cl.200092
  • Migrations and Catalytic Action of Water Molecules in the Ionized Formamide-(H2O)(2) Cluster
    Y. Matsuda, Y. Hirano, S. Mizutani, D. Sakai, A. Fujii, S. Maeda, K. Ohno, J. Phys. Chem. A, 2020, 124, 2802-2807
    DOI: 10.1021/acs.jpca.0c00637

2019

  • CO2 Adsorption on Ti3O6-: A Novel Carbonate Binding Motif
    S. Debnath, XW. Song, MR. Fagiani, ML. Weichman, M. Gao, S. Maeda, T. Taketsugu, W. Schollkopf, A. Lyalin, DM. Neumark, KR. Asmis, J. Phys. Chem. C, 2019, 123, 8439-8446
    DOI: 10.1021/acs.jpcc.8b10724
  • One-Minute Joule Annealing Enhances the Thermoelectric Properties of Carbon Nanotube Yarns via the Formation of Graphene at the Interface
    M. Hada, T. Hasegawa, H. Inoue, M. Takagi, K. Omoto, D. Chujo, S. Iemoto, T. Kuroda, T. Morimoto, T. Hayashi, T. Iijima, T. Tokunaga, N. Ikeda, K. Fujimori, C. Itoh, T. Nishikawa, Y. Yamashita, T. Kiwa, S. Koshihara, S. Maeda, Y. Hayashi, ACS Appl. Energy Mater., 2019, 2, 7700-7708
    DOI: 10.1021/acsaem.9b01736
  • Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu13
    T. Iwasa, T. Sato, M. Takagi, M. Gao, A. Lyalin, M. Kobayashi, K. Shimizu, S. Maeda, T. Taketsugu, J. Phys. Chem. A, 2019, 123, 210-217
    DOI: 10.1021/acs.jpca.8b08868
  • The Direct Observation of the Doorway 1nπ* State of Methylcinnamate and Hydrogen-Bonding Effects on the Photochemistry of Cinnamate-Based Sunscreens
    S. Kinoshita, Y. Inokuchi, Y. Onitsuka, H. Kohguchi, N. Akai, T. Shiraogawa, M. Ehara, K. Yamazaki, Y. Harabuchi, S. Maeda, T. Ebata, Phys. Chem. Chem. Phys., 2019, 21, 19755-19763
    DOI: 10.1039/c9cp02914a
  • On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search
    S. Maeda, Y. Harabuchi, J. Chem. Theory Comput., 2019, 15, 2111-2115
    DOI: 10.1021/acs.jctc.8b01182
  • A Theoretical Study on the Mechanism of the Oxidative Deborylation/C-C Coupling Reaction of Borepin Derivatives
    C. Ozen, Y. Shoji, T. Fukushima, S. Maeda, J. Org. Chem., 2019, 84, 1941-1950
    DOI: 10.1021/acs.joc.8b02917
  • Understanding CO Oxidation on the Pt(111) Surface Based on a Reaction Route Network
    K. Sugiyama, Y. Sumiya, M. Takagi, K. Saita, S. Maeda, Phys. Chem. Chem. Phys., 2019, 21, 14366-14375
    DOI: 10.1039/c8cp06856a
  • Roles of Closed-and Open-Loop Conformations in Large-Scale Structural Transitions of L-Lactate Dehydrogenase
    K. Suzuki, S. Maeda, K. Morokuma, Acs Omega, 2019, 4, 1178-1184
    DOI: 10.1021/acsomega.8b02813
  • Zn(OTf)2-Mediated Annulations of N-Propargylated Tetrahydrocarbolines: Divergent Synthesis of Four Distinct Alkaloidal Scaffolds
    S. Yorimoto, A. Tsubouchi, H. Mizoguchi, H. Oikawa, Y. Tsunekawa, T. Ichino, S. Maeda, H. Oguri, Chem. Sci., 2019, 10, 5686-5698
    DOI: 10.1039/c9sc01507h